LibraryToggle FramesPrintFeedback

A recipient list, shown in Figure 7.3, is a type of router that sends each incoming message to multiple different destinations. In addition, a recipient list typically requires that the list of recipients be calculated at run time.


The simplest kind of recipient list is where the list of destinations is fixed and known in advance, and the exchange pattern is InOnly. In this case, you can hardwire the list of destinations into the to() Java DSL command.

[Note]Note

The examples given here, for the recipient list with fixed destinations, work only with the InOnly exchange pattern (similar to a pipeline). If you want to create a recipient list for exchange patterns with Out messages, use the multicast pattern instead.

You can use a Bean in EIP Component Reference to provide the recipients, for example:

from("activemq:queue:test").recipientList().method(MessageRouter.class, "routeTo");      

Where the MessageRouter bean is defined as follows:

public class MessageRouter {

    public String routeTo() {
        String queueName = "activemq:queue:test2";
        return queueName;
    }
}      

Available as of Camel 2.5

If you use parallelProcessing, you can configure a total timeout value in milliseconds. Camel will then process the messages in parallel until the timeout is hit. This allows you to continue processing if one message is slow.

In the example below, the recipientlist header has the value, direct:a,direct:b,direct:c, so that the message is sent to three recipients. We have a timeout of 250 milliseconds, which means only the last two messages can be completed within the timeframe. The aggregation therefore yields the string result, BC.

from("direct:start")
    .recipientList(header("recipients"), ",")
    .aggregationStrategy(new AggregationStrategy() {
            public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
                if (oldExchange == null) {
                    return newExchange;
                }

                String body = oldExchange.getIn().getBody(String.class);
                oldExchange.getIn().setBody(body + newExchange.getIn().getBody(String.class));
                return oldExchange;
            }
        })
        .parallelProcessing().timeout(250)
    // use end to indicate end of recipientList clause
    .end()
    .to("mock:result");

from("direct:a").delay(500).to("mock:A").setBody(constant("A"));

from("direct:b").to("mock:B").setBody(constant("B"));

from("direct:c").to("mock:C").setBody(constant("C"));
[Tip]Timeout in other EIPs

This timeout feature is also supported by Splitter and both multicast and recipientList.

By default if a timeout occurs the AggregationStrategy is not invoked. However you can implement a specialized version

// Java
public interface TimeoutAwareAggregationStrategy extends AggregationStrategy {

    /**
     * A timeout occurred
     *
     * @param oldExchange  the oldest exchange (is <tt>null</tt> on first aggregation as we only have the new exchange)
     * @param index        the index
     * @param total        the total
     * @param timeout      the timeout value in millis
     */
    void timeout(Exchange oldExchange, int index, int total, long timeout);

This allows you to deal with the timeout in the AggregationStrategy if you really need to.

[Important]Timeout is total

The timeout is total, which means that after X time, Camel will aggregate the messages which has completed within the timeframe. The remainders will be cancelled. Camel will also only invoke the timeout method in the TimeoutAwareAggregationStrategy once, for the first index which caused the timeout.

Before recipientList sends a message to one of the recipient endpoints, it creates a message replica, which is a shallow copy of the original message. If you want to perform some custom processing on each message replica before the replica is sent to its endpoint, you can invoke the onPrepare DSL command in the recipientList clause. The onPrepare command inserts a custom processor just after the message has been shallow-copied and just before the message is dispatched to its endpoint. For example, in the following route, the CustomProc processor is invoked on the message replica for each recipient endpoint:

from("direct:start")
  .recipientList().onPrepare(new CustomProc());

A common use case for the onPrepare DSL command is to perform a deep copy of some or all elements of a message. This allows each message replica to be modified independently of the others. For example, the following CustomProc processor class performs a deep copy of the message body, where the message body is presumed to be of type, BodyType, and the deep copy is performed by the method, BodyType.deepCopy().

// Java
import org.apache.camel.*;
...
public class CustomProc implements Processor {

    public void process(Exchange exchange) throws Exception {
        BodyType body = exchange.getIn().getBody(BodyType.class);

        // Make a _deep_ copy of of the body object
        BodyType clone =  BodyType.deepCopy();
        exchange.getIn().setBody(clone);

        // Headers and attachments have already been
        // shallow-copied. If you need deep copies,
        // add some more code here.
    }
}

The recipientList DSL command supports the following options:

Name Default Value Description
delimiter , Delimiter used if the Expression returned multiple endpoints.
strategyRef Refers to an AggregationStrategy to be used to assemble the replies from the recipients, into a single outgoing message from the Recipient List. By default Camel will use the last reply as the outgoing message.
parallelProcessing false Camel 2.2: If enables then sending messages to the recipients occurs concurrently. Note the caller thread will still wait until all messages has been fully processed, before it continues. Its only the sending and processing the replies from the recipients which happens concurrently.
executorServiceRef Camel 2.2: Refers to a custom Thread Pool to be used for parallel processing. Notice if you set this option, then parallel processing is automatic implied, and you do not have to enable that option as well.
stopOnException false Camel 2.2: Whether or not to stop continue processing immediately when an exception occurred. If disable, then Camel will send the message to all recipients regardless if one of them failed. You can deal with exceptions in the AggregationStrategy class where you have full control how to handle that.
ignoreInvalidEndpoints false Camel 2.3: If an endpoint uri could not be resolved, should it be ignored. Otherwise Camel will thrown an exception stating the endpoint uri is not valid.
streaming false Camel 2.5: If enabled then Camel will process replies out-of-order, eg in the order they come back. If disabled, Camel will process replies in the same order as the Expression specified.
timeout Camel 2.5: Sets a total timeout specified in millis. If the Recipient List hasn't been able to send and process all replies within the given timeframe, then the timeout triggers and the Recipient List breaks out and continues. Notice if you provide a TimeoutAwareAggregationStrategy then the timeout method is invoked before breaking out.
onPrepareRef Camel 2.8: Refers to a custom Processor to prepare the copy of the Exchange each recipient will receive. This allows you to do any custom logic, such as deep-cloning the message payload if that's needed etc.
shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared. See the same option on Splitter for more details.

Comments powered by Disqus
loading table of contents...