| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemmu | Unicode version | ||
| Description: Lemma for caucvgprpr 6902. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemmu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.f |
. . . 4
| |
| 2 | 1pi 6505 |
. . . . 5
| |
| 3 | 2 | a1i 9 |
. . . 4
|
| 4 | 1, 3 | ffvelrnd 5324 |
. . 3
|
| 5 | prop 6665 |
. . 3
| |
| 6 | prmu 6668 |
. . 3
| |
| 7 | 4, 5, 6 | 3syl 17 |
. 2
|
| 8 | simprl 497 |
. . . 4
| |
| 9 | 1nq 6556 |
. . . 4
| |
| 10 | addclnq 6565 |
. . . 4
| |
| 11 | 8, 9, 10 | sylancl 404 |
. . 3
|
| 12 | 2 | a1i 9 |
. . . . 5
|
| 13 | simprr 498 |
. . . . . . . 8
| |
| 14 | 4 | adantr 270 |
. . . . . . . . 9
|
| 15 | nqpru 6742 |
. . . . . . . . 9
| |
| 16 | 8, 14, 15 | syl2anc 403 |
. . . . . . . 8
|
| 17 | 13, 16 | mpbid 145 |
. . . . . . 7
|
| 18 | ltaprg 6809 |
. . . . . . . . 9
| |
| 19 | 18 | adantl 271 |
. . . . . . . 8
|
| 20 | nqprlu 6737 |
. . . . . . . . 9
| |
| 21 | 8, 20 | syl 14 |
. . . . . . . 8
|
| 22 | nqprlu 6737 |
. . . . . . . . 9
| |
| 23 | 9, 22 | mp1i 10 |
. . . . . . . 8
|
| 24 | addcomprg 6768 |
. . . . . . . . 9
| |
| 25 | 24 | adantl 271 |
. . . . . . . 8
|
| 26 | 19, 14, 21, 23, 25 | caovord2d 5690 |
. . . . . . 7
|
| 27 | 17, 26 | mpbid 145 |
. . . . . 6
|
| 28 | df-1nqqs 6541 |
. . . . . . . . . . . . 13
| |
| 29 | 28 | fveq2i 5201 |
. . . . . . . . . . . 12
|
| 30 | rec1nq 6585 |
. . . . . . . . . . . 12
| |
| 31 | 29, 30 | eqtr3i 2103 |
. . . . . . . . . . 11
|
| 32 | 31 | breq2i 3793 |
. . . . . . . . . 10
|
| 33 | 32 | abbii 2194 |
. . . . . . . . 9
|
| 34 | 31 | breq1i 3792 |
. . . . . . . . . 10
|
| 35 | 34 | abbii 2194 |
. . . . . . . . 9
|
| 36 | 33, 35 | opeq12i 3575 |
. . . . . . . 8
|
| 37 | 36 | oveq2i 5543 |
. . . . . . 7
|
| 38 | 37 | a1i 9 |
. . . . . 6
|
| 39 | addnqpr 6751 |
. . . . . . 7
| |
| 40 | 8, 9, 39 | sylancl 404 |
. . . . . 6
|
| 41 | 27, 38, 40 | 3brtr4d 3815 |
. . . . 5
|
| 42 | fveq2 5198 |
. . . . . . . 8
| |
| 43 | opeq1 3570 |
. . . . . . . . . . . . 13
| |
| 44 | 43 | eceq1d 6165 |
. . . . . . . . . . . 12
|
| 45 | 44 | fveq2d 5202 |
. . . . . . . . . . 11
|
| 46 | 45 | breq2d 3797 |
. . . . . . . . . 10
|
| 47 | 46 | abbidv 2196 |
. . . . . . . . 9
|
| 48 | 45 | breq1d 3795 |
. . . . . . . . . 10
|
| 49 | 48 | abbidv 2196 |
. . . . . . . . 9
|
| 50 | 47, 49 | opeq12d 3578 |
. . . . . . . 8
|
| 51 | 42, 50 | oveq12d 5550 |
. . . . . . 7
|
| 52 | 51 | breq1d 3795 |
. . . . . 6
|
| 53 | 52 | rspcev 2701 |
. . . . 5
|
| 54 | 12, 41, 53 | syl2anc 403 |
. . . 4
|
| 55 | breq2 3789 |
. . . . . . . . 9
| |
| 56 | 55 | abbidv 2196 |
. . . . . . . 8
|
| 57 | breq1 3788 |
. . . . . . . . 9
| |
| 58 | 57 | abbidv 2196 |
. . . . . . . 8
|
| 59 | 56, 58 | opeq12d 3578 |
. . . . . . 7
|
| 60 | 59 | breq2d 3797 |
. . . . . 6
|
| 61 | 60 | rexbidv 2369 |
. . . . 5
|
| 62 | caucvgprpr.lim |
. . . . . . 7
| |
| 63 | 62 | fveq2i 5201 |
. . . . . 6
|
| 64 | nqex 6553 |
. . . . . . . 8
| |
| 65 | 64 | rabex 3922 |
. . . . . . 7
|
| 66 | 64 | rabex 3922 |
. . . . . . 7
|
| 67 | 65, 66 | op2nd 5794 |
. . . . . 6
|
| 68 | 63, 67 | eqtri 2101 |
. . . . 5
|
| 69 | 61, 68 | elrab2 2751 |
. . . 4
|
| 70 | 11, 54, 69 | sylanbrc 408 |
. . 3
|
| 71 | eleq1 2141 |
. . . 4
| |
| 72 | 71 | rspcev 2701 |
. . 3
|
| 73 | 11, 70, 72 | syl2anc 403 |
. 2
|
| 74 | 7, 73 | rexlimddv 2481 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-iltp 6660 |
| This theorem is referenced by: caucvgprprlemm 6886 |
| Copyright terms: Public domain | W3C validator |