ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemm Unicode version

Theorem caucvgprlemm 6858
Description: Lemma for caucvgpr 6872. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j, s   
j, F, l    F, r    u, F, j    L, r    ph, j, s    s,
l
Allowed substitution hints:    ph( u, k, n, r, l)    A( u, k, n, r, l)    F( k, n, s)    L( u, j, k, n, s, l)

Proof of Theorem caucvgprlemm
StepHypRef Expression
1 1pi 6505 . . . . 5  |-  1o  e.  N.
2 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
3 fveq2 5198 . . . . . . 7  |-  ( j  =  1o  ->  ( F `  j )  =  ( F `  1o ) )
43breq2d 3797 . . . . . 6  |-  ( j  =  1o  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  1o ) ) )
54rspcv 2697 . . . . 5  |-  ( 1o  e.  N.  ->  ( A. j  e.  N.  A  <Q  ( F `  j )  ->  A  <Q  ( F `  1o ) ) )
61, 2, 5mpsyl 64 . . . 4  |-  ( ph  ->  A  <Q  ( F `  1o ) )
7 ltrelnq 6555 . . . . . 6  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4410 . . . . 5  |-  ( A 
<Q  ( F `  1o )  ->  ( A  e. 
Q.  /\  ( F `  1o )  e.  Q. ) )
98simpld 110 . . . 4  |-  ( A 
<Q  ( F `  1o )  ->  A  e.  Q. )
10 halfnqq 6600 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
116, 9, 103syl 17 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
12 simplr 496 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
13 archrecnq 6853 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )
1412, 13syl 14 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
15 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s )
16 simplr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  j  e.  N. )
17 nnnq 6612 . . . . . . . . . . . . . 14  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
18 recclnq 6582 . . . . . . . . . . . . . 14  |-  ( [
<. j ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
1916, 17, 183syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q. )
2012ad2antrr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  s  e.  Q. )
21 ltanqg 6590 . . . . . . . . . . . . 13  |-  ( ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2219, 20, 20, 21syl3anc 1169 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) ) )
2315, 22mpbid 145 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s ) )
24 simpllr 500 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  s )  =  A )
2523, 24breqtrd 3809 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A )
26 rsp 2411 . . . . . . . . . . . . 13  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
272, 26syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( j  e.  N.  ->  A  <Q  ( F `  j ) ) )
2827ad4antr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
j  e.  N.  ->  A 
<Q  ( F `  j
) ) )
2916, 28mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  A  <Q  ( F `  j
) )
30 ltsonq 6588 . . . . . . . . . . 11  |-  <Q  Or  Q.
3130, 7sotri 4740 . . . . . . . . . 10  |-  ( ( ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  A  /\  A  <Q  ( F `  j
) )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3225, 29, 31syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s )  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
3332ex 113 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  Q. )  /\  ( s  +Q  s
)  =  A )  /\  j  e.  N. )  ->  ( ( *Q
`  [ <. j ,  1o >. ]  ~Q  )  <Q  s  ->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3433reximdva 2463 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( E. j  e. 
N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
s  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3514, 34mpd 13 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
36 oveq1 5539 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
3736breq1d 3795 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
3837rexbidv 2369 . . . . . . 7  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
39 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
4039fveq2i 5201 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
41 nqex 6553 . . . . . . . . . 10  |-  Q.  e.  _V
4241rabex 3922 . . . . . . . . 9  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
4341rabex 3922 . . . . . . . . 9  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
4442, 43op1st 5793 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
4540, 44eqtri 2101 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
4638, 45elrab2 2751 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
4712, 35, 46sylanbrc 408 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4847ex 113 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4948reximdva 2463 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
5011, 49mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
51 caucvgpr.f . . . . . 6  |-  ( ph  ->  F : N. --> Q. )
521a1i 9 . . . . . 6  |-  ( ph  ->  1o  e.  N. )
5351, 52ffvelrnd 5324 . . . . 5  |-  ( ph  ->  ( F `  1o )  e.  Q. )
54 1nq 6556 . . . . 5  |-  1Q  e.  Q.
55 addclnq 6565 . . . . 5  |-  ( ( ( F `  1o )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  e. 
Q. )
5653, 54, 55sylancl 404 . . . 4  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  e.  Q. )
57 addclnq 6565 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e. 
Q. )
5856, 54, 57sylancl 404 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q. )
59 df-1nqqs 6541 . . . . . . . . 9  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
6059fveq2i 5201 . . . . . . . 8  |-  ( *Q
`  1Q )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
61 rec1nq 6585 . . . . . . . 8  |-  ( *Q
`  1Q )  =  1Q
6260, 61eqtr3i 2103 . . . . . . 7  |-  ( *Q
`  [ <. 1o ,  1o >. ]  ~Q  )  =  1Q
6362oveq2i 5543 . . . . . 6  |-  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  =  ( ( F `
 1o )  +Q  1Q )
64 ltaddnq 6597 . . . . . . 7  |-  ( ( ( ( F `  1o )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1o )  +Q  1Q )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) )
6556, 54, 64sylancl 404 . . . . . 6  |-  ( ph  ->  ( ( F `  1o )  +Q  1Q )  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
6663, 65syl5eqbr 3818 . . . . 5  |-  ( ph  ->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
67 opeq1 3570 . . . . . . . . . 10  |-  ( j  =  1o  ->  <. j ,  1o >.  =  <. 1o ,  1o >. )
6867eceq1d 6165 . . . . . . . . 9  |-  ( j  =  1o  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
6968fveq2d 5202 . . . . . . . 8  |-  ( j  =  1o  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )
703, 69oveq12d 5550 . . . . . . 7  |-  ( j  =  1o  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) ) )
7170breq1d 3795 . . . . . 6  |-  ( j  =  1o  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7271rspcev 2701 . . . . 5  |-  ( ( 1o  e.  N.  /\  ( ( F `  1o )  +Q  ( *Q `  [ <. 1o ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
7352, 66, 72syl2anc 403 . . . 4  |-  ( ph  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) )
74 breq2 3789 . . . . . 6  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7574rexbidv 2369 . . . . 5  |-  ( u  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( ( ( F `
 1o )  +Q  1Q )  +Q  1Q ) ) )
7639fveq2i 5201 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
7742, 43op2nd 5794 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
7876, 77eqtri 2101 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
7975, 78elrab2 2751 . . . 4  |-  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q ) ) )
8058, 73, 79sylanbrc 408 . . 3  |-  ( ph  ->  ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
81 eleq1 2141 . . . 4  |-  ( r  =  ( ( ( F `  1o )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
8281rspcev 2701 . . 3  |-  ( ( ( ( ( F `
 1o )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1o )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8358, 80, 82syl2anc 403 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
8450, 83jca 300 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352   <.cop 3401   class class class wbr 3785   -->wf 4918   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   1oc1o 6017   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   Q.cnq 6470   1Qc1q 6471    +Q cplq 6472   *Qcrq 6474    <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543
This theorem is referenced by:  caucvgprlemcl  6866
  Copyright terms: Public domain W3C validator