ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq0 GIF version

Theorem addcmpblnq0 6633
Description: Lemma showing compatibility of addition on non-negative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addcmpblnq0 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅)) → ⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩))

Proof of Theorem addcmpblnq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nndi 6088 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·𝑜 (𝑦 +𝑜 𝑧)) = ((𝑥 ·𝑜 𝑦) +𝑜 (𝑥 ·𝑜 𝑧)))
21adantl 271 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑥 ·𝑜 (𝑦 +𝑜 𝑧)) = ((𝑥 ·𝑜 𝑦) +𝑜 (𝑥 ·𝑜 𝑧)))
3 simplll 499 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐴 ∈ ω)
4 simprlr 504 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺N)
5 pinn 6499 . . . . . . . . 9 (𝐺N𝐺 ∈ ω)
64, 5syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺 ∈ ω)
7 nnmcl 6083 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐺 ∈ ω) → (𝐴 ·𝑜 𝐺) ∈ ω)
83, 6, 7syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐴 ·𝑜 𝐺) ∈ ω)
9 simpllr 500 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵N)
10 pinn 6499 . . . . . . . . 9 (𝐵N𝐵 ∈ ω)
119, 10syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵 ∈ ω)
12 simprll 503 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐹 ∈ ω)
13 nnmcl 6083 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐹 ∈ ω) → (𝐵 ·𝑜 𝐹) ∈ ω)
1411, 12, 13syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·𝑜 𝐹) ∈ ω)
15 simplrr 502 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷N)
16 pinn 6499 . . . . . . . . 9 (𝐷N𝐷 ∈ ω)
1715, 16syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷 ∈ ω)
18 simprrr 506 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆N)
19 pinn 6499 . . . . . . . . 9 (𝑆N𝑆 ∈ ω)
2018, 19syl 14 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆 ∈ ω)
21 nnmcl 6083 . . . . . . . 8 ((𝐷 ∈ ω ∧ 𝑆 ∈ ω) → (𝐷 ·𝑜 𝑆) ∈ ω)
2217, 20, 21syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·𝑜 𝑆) ∈ ω)
23 nnacl 6082 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +𝑜 𝑦) ∈ ω)
2423adantl 271 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 +𝑜 𝑦) ∈ ω)
25 nnmcom 6091 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·𝑜 𝑦) = (𝑦 ·𝑜 𝑥))
2625adantl 271 . . . . . . 7 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·𝑜 𝑦) = (𝑦 ·𝑜 𝑥))
272, 8, 14, 22, 24, 26caovdir2d 5697 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = (((𝐴 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐹) ·𝑜 (𝐷 ·𝑜 𝑆))))
28 nnmass 6089 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·𝑜 𝑦) ·𝑜 𝑧) = (𝑥 ·𝑜 (𝑦 ·𝑜 𝑧)))
2928adantl 271 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·𝑜 𝑦) ·𝑜 𝑧) = (𝑥 ·𝑜 (𝑦 ·𝑜 𝑧)))
30 nnmcl 6083 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·𝑜 𝑦) ∈ ω)
3130adantl 271 . . . . . . . 8 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·𝑜 𝑦) ∈ ω)
323, 6, 17, 26, 29, 20, 31caov4d 5705 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐴 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑆)))
3311, 12, 17, 26, 29, 20, 31caov4d 5705 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·𝑜 𝐹) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐹 ·𝑜 𝑆)))
3432, 33oveq12d 5550 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐹) ·𝑜 (𝐷 ·𝑜 𝑆))) = (((𝐴 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐹 ·𝑜 𝑆))))
3527, 34eqtrd 2113 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = (((𝐴 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐹 ·𝑜 𝑆))))
36 oveq1 5539 . . . . . 6 ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) → ((𝐴 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)))
37 oveq2 5540 . . . . . 6 ((𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅) → ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐹 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅)))
3836, 37oveqan12d 5551 . . . . 5 (((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅)) → (((𝐴 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐹 ·𝑜 𝑆))) = (((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅))))
3935, 38sylan9eq 2133 . . . 4 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅))) → (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = (((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅))))
40 nnmcl 6083 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐺 ∈ ω) → (𝐵 ·𝑜 𝐺) ∈ ω)
4111, 6, 40syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·𝑜 𝐺) ∈ ω)
42 simplrl 501 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐶 ∈ ω)
43 nnmcl 6083 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝑆 ∈ ω) → (𝐶 ·𝑜 𝑆) ∈ ω)
4442, 20, 43syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐶 ·𝑜 𝑆) ∈ ω)
45 simprrl 505 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑅 ∈ ω)
46 nnmcl 6083 . . . . . . . 8 ((𝐷 ∈ ω ∧ 𝑅 ∈ ω) → (𝐷 ·𝑜 𝑅) ∈ ω)
4717, 45, 46syl2anc 403 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·𝑜 𝑅) ∈ ω)
48 nndi 6088 . . . . . . 7 (((𝐵 ·𝑜 𝐺) ∈ ω ∧ (𝐶 ·𝑜 𝑆) ∈ ω ∧ (𝐷 ·𝑜 𝑅) ∈ ω) → ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅))) = (((𝐵 ·𝑜 𝐺) ·𝑜 (𝐶 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑅))))
4941, 44, 47, 48syl3anc 1169 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅))) = (((𝐵 ·𝑜 𝐺) ·𝑜 (𝐶 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑅))))
5011, 6, 42, 26, 29, 20, 31caov4d 5705 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·𝑜 𝐺) ·𝑜 (𝐶 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)))
5111, 6, 17, 26, 29, 45, 31caov4d 5705 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑅)) = ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅)))
5250, 51oveq12d 5550 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐵 ·𝑜 𝐺) ·𝑜 (𝐶 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐺) ·𝑜 (𝐷 ·𝑜 𝑅))) = (((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅))))
5349, 52eqtrd 2113 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅))) = (((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅))))
5453adantr 270 . . . 4 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅))) → ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅))) = (((𝐵 ·𝑜 𝐶) ·𝑜 (𝐺 ·𝑜 𝑆)) +𝑜 ((𝐵 ·𝑜 𝐷) ·𝑜 (𝐺 ·𝑜 𝑅))))
5539, 54eqtr4d 2116 . . 3 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅))) → (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅))))
56 nnacl 6082 . . . . . 6 (((𝐴 ·𝑜 𝐺) ∈ ω ∧ (𝐵 ·𝑜 𝐹) ∈ ω) → ((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ∈ ω)
578, 14, 56syl2anc 403 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ∈ ω)
58 mulpiord 6507 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) = (𝐵 ·𝑜 𝐺))
59 mulclpi 6518 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
6058, 59eqeltrrd 2156 . . . . . . 7 ((𝐵N𝐺N) → (𝐵 ·𝑜 𝐺) ∈ N)
6160ad2ant2l 491 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) → (𝐵 ·𝑜 𝐺) ∈ N)
6261ad2ant2r 492 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐵 ·𝑜 𝐺) ∈ N)
63 nnacl 6082 . . . . . 6 (((𝐶 ·𝑜 𝑆) ∈ ω ∧ (𝐷 ·𝑜 𝑅) ∈ ω) → ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)) ∈ ω)
6444, 47, 63syl2anc 403 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)) ∈ ω)
65 mulpiord 6507 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) = (𝐷 ·𝑜 𝑆))
66 mulclpi 6518 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
6765, 66eqeltrrd 2156 . . . . . . 7 ((𝐷N𝑆N) → (𝐷 ·𝑜 𝑆) ∈ N)
6867ad2ant2l 491 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N)) → (𝐷 ·𝑜 𝑆) ∈ N)
6968ad2ant2l 491 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (𝐷 ·𝑜 𝑆) ∈ N)
70 enq0breq 6626 . . . . 5 (((((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ∈ ω ∧ (𝐵 ·𝑜 𝐺) ∈ N) ∧ (((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)) ∈ ω ∧ (𝐷 ·𝑜 𝑆) ∈ N)) → (⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩ ↔ (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)))))
7157, 62, 64, 69, 70syl22anc 1170 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩ ↔ (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)))))
7271adantr 270 . . 3 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅))) → (⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩ ↔ (((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)) ·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜 ((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)))))
7355, 72mpbird 165 . 2 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅))) → ⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩)
7473ex 113 1 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅)) → ⟨((𝐴 ·𝑜 𝐺) +𝑜 (𝐵 ·𝑜 𝐹)), (𝐵 ·𝑜 𝐺)⟩ ~Q0 ⟨((𝐶 ·𝑜 𝑆) +𝑜 (𝐷 ·𝑜 𝑅)), (𝐷 ·𝑜 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 919   = wceq 1284  wcel 1433  cop 3401   class class class wbr 3785  ωcom 4331  (class class class)co 5532   +𝑜 coa 6021   ·𝑜 comu 6022  Ncnpi 6462   ·N cmi 6464   ~Q0 ceq0 6476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-ni 6494  df-mi 6496  df-enq0 6614
This theorem is referenced by:  addnq0mo  6637
  Copyright terms: Public domain W3C validator