ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcom GIF version

Theorem nnmcom 6091
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))

Proof of Theorem nnmcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5539 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐵))
2 oveq2 5540 . . . . 5 (𝑥 = 𝐴 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐴))
31, 2eqeq12d 2095 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)))
43imbi2d 228 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))))
5 oveq1 5539 . . . . 5 (𝑥 = ∅ → (𝑥 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
6 oveq2 5540 . . . . 5 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
75, 6eqeq12d 2095 . . . 4 (𝑥 = ∅ → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (∅ ·𝑜 𝐵) = (𝐵 ·𝑜 ∅)))
8 oveq1 5539 . . . . 5 (𝑥 = 𝑦 → (𝑥 ·𝑜 𝐵) = (𝑦 ·𝑜 𝐵))
9 oveq2 5540 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
108, 9eqeq12d 2095 . . . 4 (𝑥 = 𝑦 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦)))
11 oveq1 5539 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 ·𝑜 𝐵) = (suc 𝑦 ·𝑜 𝐵))
12 oveq2 5540 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1311, 12eqeq12d 2095 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥) ↔ (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦)))
14 nnm0r 6081 . . . . 5 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
15 nnm0 6077 . . . . 5 (𝐵 ∈ ω → (𝐵 ·𝑜 ∅) = ∅)
1614, 15eqtr4d 2116 . . . 4 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = (𝐵 ·𝑜 ∅))
17 oveq1 5539 . . . . . 6 ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → ((𝑦 ·𝑜 𝐵) +𝑜 𝐵) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
18 nnmsucr 6090 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·𝑜 𝐵) = ((𝑦 ·𝑜 𝐵) +𝑜 𝐵))
19 nnmsuc 6079 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2019ancoms 264 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
2118, 20eqeq12d 2095 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦) ↔ ((𝑦 ·𝑜 𝐵) +𝑜 𝐵) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
2217, 21syl5ibr 154 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦)))
2322ex 113 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑦) → (suc 𝑦 ·𝑜 𝐵) = (𝐵 ·𝑜 suc 𝑦))))
247, 10, 13, 16, 23finds2 4342 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·𝑜 𝐵) = (𝐵 ·𝑜 𝑥)))
254, 24vtoclga 2664 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴)))
2625imp 122 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) = (𝐵 ·𝑜 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  c0 3251  suc csuc 4120  ωcom 4331  (class class class)co 5532   +𝑜 coa 6021   ·𝑜 comu 6022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029
This theorem is referenced by:  nndir  6092  nn2m  6122  mulcompig  6521  enq0sym  6622  enq0ref  6623  enq0tr  6624  addcmpblnq0  6633  mulcmpblnq0  6634  mulcanenq0ec  6635  nnanq0  6648  distrnq0  6649  mulcomnq0  6650  addassnq0  6652  nq02m  6655
  Copyright terms: Public domain W3C validator