| Step | Hyp | Ref
| Expression |
| 1 | | oveq12 5541 |
. 2
⊢ (((𝐴 ·𝑜
𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅)) → ((𝐴 ·𝑜 𝐷) ·𝑜
(𝐹
·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐶) ·𝑜
(𝐺
·𝑜 𝑅))) |
| 2 | | nnmcl 6083 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐹 ∈ ω) → (𝐴 ·𝑜
𝐹) ∈
ω) |
| 3 | | mulpiord 6507 |
. . . . . . . . 9
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·N 𝐺) = (𝐵 ·𝑜 𝐺)) |
| 4 | | mulclpi 6518 |
. . . . . . . . 9
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·N 𝐺) ∈ N) |
| 5 | 3, 4 | eqeltrrd 2156 |
. . . . . . . 8
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·𝑜 𝐺) ∈ N) |
| 6 | 2, 5 | anim12i 331 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐹 ∈ ω) ∧ (𝐵 ∈ N ∧
𝐺 ∈ N))
→ ((𝐴
·𝑜 𝐹) ∈ ω ∧ (𝐵 ·𝑜 𝐺) ∈
N)) |
| 7 | 6 | an4s 552 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐹 ∈ ω ∧
𝐺 ∈ N))
→ ((𝐴
·𝑜 𝐹) ∈ ω ∧ (𝐵 ·𝑜 𝐺) ∈
N)) |
| 8 | | nnmcl 6083 |
. . . . . . . 8
⊢ ((𝐶 ∈ ω ∧ 𝑅 ∈ ω) → (𝐶 ·𝑜
𝑅) ∈
ω) |
| 9 | | mulpiord 6507 |
. . . . . . . . 9
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·N 𝑆) = (𝐷 ·𝑜 𝑆)) |
| 10 | | mulclpi 6518 |
. . . . . . . . 9
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·N 𝑆) ∈ N) |
| 11 | 9, 10 | eqeltrrd 2156 |
. . . . . . . 8
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·𝑜 𝑆) ∈ N) |
| 12 | 8, 11 | anim12i 331 |
. . . . . . 7
⊢ (((𝐶 ∈ ω ∧ 𝑅 ∈ ω) ∧ (𝐷 ∈ N ∧
𝑆 ∈ N))
→ ((𝐶
·𝑜 𝑅) ∈ ω ∧ (𝐷 ·𝑜 𝑆) ∈
N)) |
| 13 | 12 | an4s 552 |
. . . . . 6
⊢ (((𝐶 ∈ ω ∧ 𝐷 ∈ N) ∧
(𝑅 ∈ ω ∧
𝑆 ∈ N))
→ ((𝐶
·𝑜 𝑅) ∈ ω ∧ (𝐷 ·𝑜 𝑆) ∈
N)) |
| 14 | 7, 13 | anim12i 331 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐹 ∈ ω ∧
𝐺 ∈ N))
∧ ((𝐶 ∈ ω
∧ 𝐷 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·𝑜 𝐹) ∈ ω ∧ (𝐵 ·𝑜
𝐺) ∈ N)
∧ ((𝐶
·𝑜 𝑅) ∈ ω ∧ (𝐷 ·𝑜 𝑆) ∈
N))) |
| 15 | 14 | an4s 552 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·𝑜 𝐹) ∈ ω ∧ (𝐵 ·𝑜
𝐺) ∈ N)
∧ ((𝐶
·𝑜 𝑅) ∈ ω ∧ (𝐷 ·𝑜 𝑆) ∈
N))) |
| 16 | | enq0breq 6626 |
. . . 4
⊢ ((((𝐴 ·𝑜
𝐹) ∈ ω ∧
(𝐵
·𝑜 𝐺) ∈ N) ∧ ((𝐶 ·𝑜
𝑅) ∈ ω ∧
(𝐷
·𝑜 𝑆) ∈ N)) →
(〈(𝐴
·𝑜 𝐹), (𝐵 ·𝑜 𝐺)〉
~Q0 〈(𝐶 ·𝑜 𝑅), (𝐷 ·𝑜 𝑆)〉 ↔ ((𝐴 ·𝑜
𝐹)
·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜
(𝐶
·𝑜 𝑅)))) |
| 17 | 15, 16 | syl 14 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (〈(𝐴 ·𝑜 𝐹), (𝐵 ·𝑜 𝐺)〉
~Q0 〈(𝐶 ·𝑜 𝑅), (𝐷 ·𝑜 𝑆)〉 ↔ ((𝐴 ·𝑜
𝐹)
·𝑜 (𝐷 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜
(𝐶
·𝑜 𝑅)))) |
| 18 | | simplll 499 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐴 ∈ ω) |
| 19 | | simprll 503 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐹 ∈ ω) |
| 20 | | simplrr 502 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐷 ∈ N) |
| 21 | | pinn 6499 |
. . . . . 6
⊢ (𝐷 ∈ N →
𝐷 ∈
ω) |
| 22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐷 ∈ ω) |
| 23 | | nnmcom 6091 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·𝑜
𝑦) = (𝑦 ·𝑜 𝑥)) |
| 24 | 23 | adantl 271 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω)) →
(𝑥
·𝑜 𝑦) = (𝑦 ·𝑜 𝑥)) |
| 25 | | nnmass 6089 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·𝑜
𝑦)
·𝑜 𝑧) = (𝑥 ·𝑜 (𝑦 ·𝑜
𝑧))) |
| 26 | 25 | adantl 271 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω ∧
𝑧 ∈ ω)) →
((𝑥
·𝑜 𝑦) ·𝑜 𝑧) = (𝑥 ·𝑜 (𝑦 ·𝑜
𝑧))) |
| 27 | | simprrr 506 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑆 ∈ N) |
| 28 | | pinn 6499 |
. . . . . 6
⊢ (𝑆 ∈ N →
𝑆 ∈
ω) |
| 29 | 27, 28 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑆 ∈ ω) |
| 30 | | nnmcl 6083 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·𝑜
𝑦) ∈
ω) |
| 31 | 30 | adantl 271 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω)) →
(𝑥
·𝑜 𝑦) ∈ ω) |
| 32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 5705 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → ((𝐴 ·𝑜 𝐹) ·𝑜
(𝐷
·𝑜 𝑆)) = ((𝐴 ·𝑜 𝐷) ·𝑜
(𝐹
·𝑜 𝑆))) |
| 33 | | simpllr 500 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐵 ∈ N) |
| 34 | | pinn 6499 |
. . . . . 6
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 35 | 33, 34 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐵 ∈ ω) |
| 36 | | simprlr 504 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐺 ∈ N) |
| 37 | | pinn 6499 |
. . . . . 6
⊢ (𝐺 ∈ N →
𝐺 ∈
ω) |
| 38 | 36, 37 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐺 ∈ ω) |
| 39 | | simplrl 501 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐶 ∈ ω) |
| 40 | | simprrl 505 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑅 ∈ ω) |
| 41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 5705 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → ((𝐵 ·𝑜 𝐺) ·𝑜
(𝐶
·𝑜 𝑅)) = ((𝐵 ·𝑜 𝐶) ·𝑜
(𝐺
·𝑜 𝑅))) |
| 42 | 32, 41 | eqeq12d 2095 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·𝑜 𝐹) ·𝑜
(𝐷
·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐺) ·𝑜
(𝐶
·𝑜 𝑅)) ↔ ((𝐴 ·𝑜 𝐷) ·𝑜
(𝐹
·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐶) ·𝑜
(𝐺
·𝑜 𝑅)))) |
| 43 | 17, 42 | bitrd 186 |
. 2
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (〈(𝐴 ·𝑜 𝐹), (𝐵 ·𝑜 𝐺)〉
~Q0 〈(𝐶 ·𝑜 𝑅), (𝐷 ·𝑜 𝑆)〉 ↔ ((𝐴 ·𝑜
𝐷)
·𝑜 (𝐹 ·𝑜 𝑆)) = ((𝐵 ·𝑜 𝐶) ·𝑜
(𝐺
·𝑜 𝑅)))) |
| 44 | 1, 43 | syl5ibr 154 |
1
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ∧ (𝐹 ·𝑜 𝑆) = (𝐺 ·𝑜 𝑅)) → 〈(𝐴 ·𝑜
𝐹), (𝐵 ·𝑜 𝐺)〉
~Q0 〈(𝐶 ·𝑜 𝑅), (𝐷 ·𝑜 𝑆)〉)) |