ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopr GIF version

Theorem ltsopr 6786
Description: Positive real 'less than' is a weak linear order (in the sense of df-iso 4052). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
Assertion
Ref Expression
ltsopr <P Or P

Proof of Theorem ltsopr
Dummy variables 𝑟 𝑞 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltpopr 6785 . 2 <P Po P
2 ltdfpr 6696 . . . . 5 ((𝑥P𝑦P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
323adant3 958 . . . 4 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 ↔ ∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))))
4 prop 6665 . . . . . . . . . . . 12 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
5 prnminu 6679 . . . . . . . . . . . 12 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
64, 5sylan 277 . . . . . . . . . . 11 ((𝑥P𝑞 ∈ (2nd𝑥)) → ∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞)
7 prop 6665 . . . . . . . . . . . 12 (𝑦P → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ P)
8 prnmaxl 6678 . . . . . . . . . . . 12 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
97, 8sylan 277 . . . . . . . . . . 11 ((𝑦P𝑞 ∈ (1st𝑦)) → ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠)
106, 9anim12i 331 . . . . . . . . . 10 (((𝑥P𝑞 ∈ (2nd𝑥)) ∧ (𝑦P𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1110an4s 552 . . . . . . . . 9 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
12 reeanv 2523 . . . . . . . . 9 (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) ↔ (∃𝑟 ∈ (2nd𝑥)𝑟 <Q 𝑞 ∧ ∃𝑠 ∈ (1st𝑦)𝑞 <Q 𝑠))
1311, 12sylibr 132 . . . . . . . 8 (((𝑥P𝑦P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
14133adantl3 1096 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → ∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠))
15 ltsonq 6588 . . . . . . . . . . . . 13 <Q Or Q
16 ltrelnq 6555 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
1715, 16sotri 4740 . . . . . . . . . . . 12 ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → 𝑟 <Q 𝑠)
1817adantl 271 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → 𝑟 <Q 𝑠)
19 prop 6665 . . . . . . . . . . . . . . . 16 (𝑧P → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ P)
20 prloc 6681 . . . . . . . . . . . . . . . 16 ((⟨(1st𝑧), (2nd𝑧)⟩ ∈ P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2119, 20sylan 277 . . . . . . . . . . . . . . 15 ((𝑧P𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
22213ad2antl3 1102 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 <Q 𝑠) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
2322ex 113 . . . . . . . . . . . . 13 ((𝑥P𝑦P𝑧P) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2423adantr 270 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2524ad2antrr 471 . . . . . . . . . . 11 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 <Q 𝑠 → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧))))
2618, 25mpd 13 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)))
27 elprnqu 6672 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑥), (2nd𝑥)⟩ ∈ P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
284, 27sylan 277 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → 𝑟Q)
29 ax-ia3 106 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ (2nd𝑥) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3029adantl 271 . . . . . . . . . . . . . . . . . . . 20 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
31 19.8a 1522 . . . . . . . . . . . . . . . . . . . 20 ((𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3228, 30, 31syl6an 1363 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
33323ad2antl1 1100 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))))
3433imp 122 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
35 df-rex 2354 . . . . . . . . . . . . . . . . 17 (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) ↔ ∃𝑟(𝑟Q ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3634, 35sylibr 132 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)))
37 ltdfpr 6696 . . . . . . . . . . . . . . . . . . 19 ((𝑥P𝑧P) → (𝑥<P 𝑧 ↔ ∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧))))
3837biimprd 156 . . . . . . . . . . . . . . . . . 18 ((𝑥P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
39383adant2 957 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4039ad2antrr 471 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → (∃𝑟Q (𝑟 ∈ (2nd𝑥) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧))
4136, 40mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) ∧ 𝑟 ∈ (1st𝑧)) → 𝑥<P 𝑧)
4241ex 113 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑟 ∈ (2nd𝑥)) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
4342adantrr 462 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑟 ∈ (1st𝑧) → 𝑥<P 𝑧))
44 elprnql 6671 . . . . . . . . . . . . . . . . . . . . 21 ((⟨(1st𝑦), (2nd𝑦)⟩ ∈ P𝑠 ∈ (1st𝑦)) → 𝑠Q)
457, 44sylan 277 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → 𝑠Q)
46 pm3.21 260 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (1st𝑦) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4746adantl 271 . . . . . . . . . . . . . . . . . . . 20 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
48 19.8a 1522 . . . . . . . . . . . . . . . . . . . 20 ((𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
4945, 47, 48syl6an 1363 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
50493ad2antl2 1101 . . . . . . . . . . . . . . . . . 18 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))))
5150imp 122 . . . . . . . . . . . . . . . . 17 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
52 df-rex 2354 . . . . . . . . . . . . . . . . 17 (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) ↔ ∃𝑠(𝑠Q ∧ (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5351, 52sylibr 132 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)))
54 ltdfpr 6696 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑦P) → (𝑧<P 𝑦 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦))))
5554biimprd 156 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑦P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5655ancoms 264 . . . . . . . . . . . . . . . . . 18 ((𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
57563adant1 956 . . . . . . . . . . . . . . . . 17 ((𝑥P𝑦P𝑧P) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5857ad2antrr 471 . . . . . . . . . . . . . . . 16 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → (∃𝑠Q (𝑠 ∈ (2nd𝑧) ∧ 𝑠 ∈ (1st𝑦)) → 𝑧<P 𝑦))
5953, 58mpd 13 . . . . . . . . . . . . . . 15 ((((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) ∧ 𝑠 ∈ (2nd𝑧)) → 𝑧<P 𝑦)
6059ex 113 . . . . . . . . . . . . . 14 (((𝑥P𝑦P𝑧P) ∧ 𝑠 ∈ (1st𝑦)) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6160adantrl 461 . . . . . . . . . . . . 13 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → (𝑠 ∈ (2nd𝑧) → 𝑧<P 𝑦))
6243, 61orim12d 732 . . . . . . . . . . . 12 (((𝑥P𝑦P𝑧P) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6362adantlr 460 . . . . . . . . . . 11 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6463adantr 270 . . . . . . . . . 10 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → ((𝑟 ∈ (1st𝑧) ∨ 𝑠 ∈ (2nd𝑧)) → (𝑥<P 𝑧𝑧<P 𝑦)))
6526, 64mpd 13 . . . . . . . . 9 (((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) ∧ (𝑟 <Q 𝑞𝑞 <Q 𝑠)) → (𝑥<P 𝑧𝑧<P 𝑦))
6665ex 113 . . . . . . . 8 ((((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) ∧ (𝑟 ∈ (2nd𝑥) ∧ 𝑠 ∈ (1st𝑦))) → ((𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6766rexlimdvva 2484 . . . . . . 7 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (∃𝑟 ∈ (2nd𝑥)∃𝑠 ∈ (1st𝑦)(𝑟 <Q 𝑞𝑞 <Q 𝑠) → (𝑥<P 𝑧𝑧<P 𝑦)))
6814, 67mpd 13 . . . . . 6 (((𝑥P𝑦P𝑧P) ∧ (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦))) → (𝑥<P 𝑧𝑧<P 𝑦))
6968ex 113 . . . . 5 ((𝑥P𝑦P𝑧P) → ((𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
7069rexlimdvw 2480 . . . 4 ((𝑥P𝑦P𝑧P) → (∃𝑞Q (𝑞 ∈ (2nd𝑥) ∧ 𝑞 ∈ (1st𝑦)) → (𝑥<P 𝑧𝑧<P 𝑦)))
713, 70sylbid 148 . . 3 ((𝑥P𝑦P𝑧P) → (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦)))
7271rgen3 2448 . 2 𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))
73 df-iso 4052 . 2 (<P Or P ↔ (<P Po P ∧ ∀𝑥P𝑦P𝑧P (𝑥<P 𝑦 → (𝑥<P 𝑧𝑧<P 𝑦))))
741, 72, 73mpbir2an 883 1 <P Or P
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3a 919  wex 1421  wcel 1433  wral 2348  wrex 2349  cop 3401   class class class wbr 3785   Po wpo 4049   Or wor 4050  cfv 4922  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   <Q cltq 6475  Pcnp 6481  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-lti 6497  df-enq 6537  df-nqqs 6538  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  prplnqu  6810  addextpr  6811  caucvgprprlemk  6873  caucvgprprlemnkltj  6879  caucvgprprlemnkeqj  6880  caucvgprprlemnjltk  6881  caucvgprprlemnbj  6883  caucvgprprlemml  6884  caucvgprprlemlol  6888  caucvgprprlemupu  6890  caucvgprprlemloc  6893  caucvgprprlemaddq  6898  lttrsr  6939  ltposr  6940  ltsosr  6941  archsr  6958
  Copyright terms: Public domain W3C validator