![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulclnq0 | GIF version |
Description: Closure of multiplication on non-negative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.) |
Ref | Expression |
---|---|
mulclnq0 | ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nq0 6615 | . . 3 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
2 | oveq1 5539 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 )) | |
3 | 2 | eleq1d 2147 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ))) |
4 | oveq2 5540 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → (𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = (𝐴 ·Q0 𝐵)) | |
5 | 4 | eleq1d 2147 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~Q0 = 𝐵 → ((𝐴 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 ))) |
6 | mulnnnq0 6640 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) = [〈(𝑥 ·𝑜 𝑧), (𝑦 ·𝑜 𝑤)〉] ~Q0 ) | |
7 | nnmcl 6083 | . . . . . . 7 ⊢ ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·𝑜 𝑧) ∈ ω) | |
8 | mulpiord 6507 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) = (𝑦 ·𝑜 𝑤)) | |
9 | mulclpi 6518 | . . . . . . . 8 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·N 𝑤) ∈ N) | |
10 | 8, 9 | eqeltrrd 2156 | . . . . . . 7 ⊢ ((𝑦 ∈ N ∧ 𝑤 ∈ N) → (𝑦 ·𝑜 𝑤) ∈ N) |
11 | 7, 10 | anim12i 331 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝑦 ∈ N ∧ 𝑤 ∈ N)) → ((𝑥 ·𝑜 𝑧) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N)) |
12 | 11 | an4s 552 | . . . . 5 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ((𝑥 ·𝑜 𝑧) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N)) |
13 | opelxpi 4394 | . . . . 5 ⊢ (((𝑥 ·𝑜 𝑧) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N) → 〈(𝑥 ·𝑜 𝑧), (𝑦 ·𝑜 𝑤)〉 ∈ (ω × N)) | |
14 | enq0ex 6629 | . . . . . 6 ⊢ ~Q0 ∈ V | |
15 | 14 | ecelqsi 6183 | . . . . 5 ⊢ (〈(𝑥 ·𝑜 𝑧), (𝑦 ·𝑜 𝑤)〉 ∈ (ω × N) → [〈(𝑥 ·𝑜 𝑧), (𝑦 ·𝑜 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
16 | 12, 13, 15 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → [〈(𝑥 ·𝑜 𝑧), (𝑦 ·𝑜 𝑤)〉] ~Q0 ∈ ((ω × N) / ~Q0 )) |
17 | 6, 16 | eqeltrd 2155 | . . 3 ⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧ (𝑧 ∈ ω ∧ 𝑤 ∈ N)) → ([〈𝑥, 𝑦〉] ~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈ ((ω × N) / ~Q0 )) |
18 | 1, 3, 5, 17 | 2ecoptocl 6217 | . 2 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ ((ω × N) / ~Q0 )) |
19 | 18, 1 | syl6eleqr 2172 | 1 ⊢ ((𝐴 ∈ Q0 ∧ 𝐵 ∈ Q0) → (𝐴 ·Q0 𝐵) ∈ Q0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 ωcom 4331 × cxp 4361 (class class class)co 5532 ·𝑜 comu 6022 [cec 6127 / cqs 6128 Ncnpi 6462 ·N cmi 6464 ~Q0 ceq0 6476 Q0cnq0 6477 ·Q0 cmq0 6480 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-mi 6496 df-enq0 6614 df-nq0 6615 df-mq0 6618 |
This theorem is referenced by: prarloclemcalc 6692 |
Copyright terms: Public domain | W3C validator |