ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 GIF version

Theorem addnnnq0 6639
Description: Addition of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )

Proof of Theorem addnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4394 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 6629 . . . . 5 ~Q0 ∈ V
32ecelqsi 6183 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4394 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6183 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 331 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2081 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2081 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 266 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2081 . . 3 [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0
13 opeq12 3572 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6165 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2092 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 452 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 simpl 107 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5547 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·𝑜 𝐷) = (𝐴 ·𝑜 𝐷))
19 simpr 108 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5547 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·𝑜 𝐶) = (𝐵 ·𝑜 𝐶))
2118, 20oveq12d 5550 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)) = ((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)))
2219oveq1d 5547 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐷))
2321, 22opeq12d 3578 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩ = ⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩)
2423eceq1d 6165 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
2524eqeq2d 2092 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
2616, 25anbi12d 456 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )))
2726spc2egv 2687 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
28 opeq12 3572 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2928eceq1d 6165 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3029eqeq2d 2092 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3130anbi2d 451 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
32 simpr 108 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5548 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·𝑜 𝑡) = (𝑤 ·𝑜 𝐷))
34 simpl 107 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3534oveq2d 5548 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝐶))
3633, 35oveq12d 5550 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)) = ((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)))
3732oveq2d 5548 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·𝑜 𝑡) = (𝑣 ·𝑜 𝐷))
3836, 37opeq12d 3578 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩ = ⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩)
3938eceq1d 6165 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )
4039eqeq2d 2092 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ))
4131, 40anbi12d 456 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
4241spc2egv 2687 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
43422eximdv 1803 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
4427, 43sylan9 401 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
4511, 12, 44mp2ani 422 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
46 ecexg 6133 . . . 4 ( ~Q0 ∈ V → [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V)
472, 46ax-mp 7 . . 3 [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V
48 simp1 938 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 )
4948eqeq1d 2089 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
50 simp2 939 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 )
5150eqeq1d 2089 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5249, 51anbi12d 456 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
53 simp3 940 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
5453eqeq1d 2089 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
5552, 54anbi12d 456 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
56554exbidv 1791 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
57 addnq0mo 6637 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
58 dfplq0qs 6620 . . . 4 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))}
5956, 57, 58ovig 5642 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
6047, 59mp3an3 1257 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
618, 45, 60sylc 61 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 919   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  cop 3401  ωcom 4331   × cxp 4361  (class class class)co 5532   +𝑜 coa 6021   ·𝑜 comu 6022  [cec 6127   / cqs 6128  Ncnpi 6462   ~Q0 ceq0 6476   +Q0 cplq0 6479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-mi 6496  df-enq0 6614  df-nq0 6615  df-plq0 6617
This theorem is referenced by:  addclnq0  6641  nqpnq0nq  6643  nqnq0a  6644  nq0a0  6647  nnanq0  6648  distrnq0  6649  addassnq0  6652
  Copyright terms: Public domain W3C validator