ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem GIF version

Theorem frecuzrdglem 9413
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
uzrdg.s (𝜑𝑆𝑉)
uzrdg.a (𝜑𝐴𝑆)
uzrdg.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
uzrdg.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdglem.b (𝜑𝐵 ∈ (ℤ𝐶))
Assertion
Ref Expression
frecuzrdglem (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4 (𝜑𝐶 ∈ ℤ)
2 frec2uz.2 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3 uzrdg.s . . . 4 (𝜑𝑆𝑉)
4 uzrdg.a . . . 4 (𝜑𝐴𝑆)
5 uzrdg.f . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
6 uzrdg.2 . . . 4 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
71, 2frec2uzf1od 9408 . . . . 5 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
8 frecuzrdglem.b . . . . 5 (𝜑𝐵 ∈ (ℤ𝐶))
9 f1ocnvdm 5441 . . . . 5 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
107, 8, 9syl2anc 403 . . . 4 (𝜑 → (𝐺𝐵) ∈ ω)
111, 2, 3, 4, 5, 6, 10frec2uzrdg 9411 . . 3 (𝜑 → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
12 f1ocnvfv2 5438 . . . . 5 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
137, 8, 12syl2anc 403 . . . 4 (𝜑 → (𝐺‘(𝐺𝐵)) = 𝐵)
1413opeq1d 3576 . . 3 (𝜑 → ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
1511, 14eqtrd 2113 . 2 (𝜑 → (𝑅‘(𝐺𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
161, 2, 3, 4, 5, 6frecuzrdgrom 9412 . . 3 (𝜑𝑅 Fn ω)
17 fnfvelrn 5320 . . 3 ((𝑅 Fn ω ∧ (𝐺𝐵) ∈ ω) → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
1816, 10, 17syl2anc 403 . 2 (𝜑 → (𝑅‘(𝐺𝐵)) ∈ ran 𝑅)
1915, 18eqeltrrd 2156 1 (𝜑 → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  cop 3401  cmpt 3839  ωcom 4331  ccnv 4362  ran crn 4364   Fn wfn 4917  1-1-ontowf1o 4921  cfv 4922  (class class class)co 5532  cmpt2 5534  2nd c2nd 5786  freccfrec 6000  1c1 6982   + caddc 6984  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  frecuzrdgfn  9414  frecuzrdgcl  9415  frecuzrdgsuc  9417
  Copyright terms: Public domain W3C validator