| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdglem | GIF version | ||
| Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| uzrdg.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| uzrdg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| uzrdg.f | ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| uzrdg.2 | ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
| frecuzrdglem.b | ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) |
| Ref | Expression |
|---|---|
| frecuzrdglem | ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uz.1 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | frec2uz.2 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 3 | uzrdg.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | uzrdg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 5 | uzrdg.f | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 6 | uzrdg.2 | . . . 4 ⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | |
| 7 | 1, 2 | frec2uzf1od 9408 | . . . . 5 ⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
| 8 | frecuzrdglem.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐶)) | |
| 9 | f1ocnvdm 5441 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | |
| 10 | 7, 8, 9 | syl2anc 403 | . . . 4 ⊢ (𝜑 → (◡𝐺‘𝐵) ∈ ω) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | frec2uzrdg 9411 | . . 3 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 12 | f1ocnvfv2 5438 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
| 13 | 7, 8, 12 | syl2anc 403 | . . . 4 ⊢ (𝜑 → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
| 14 | 13 | opeq1d 3576 | . . 3 ⊢ (𝜑 → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 15 | 11, 14 | eqtrd 2113 | . 2 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 16 | 1, 2, 3, 4, 5, 6 | frecuzrdgrom 9412 | . . 3 ⊢ (𝜑 → 𝑅 Fn ω) |
| 17 | fnfvelrn 5320 | . . 3 ⊢ ((𝑅 Fn ω ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) | |
| 18 | 16, 10, 17 | syl2anc 403 | . 2 ⊢ (𝜑 → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
| 19 | 15, 18 | eqeltrrd 2156 | 1 ⊢ (𝜑 → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 ↦ cmpt 3839 ωcom 4331 ◡ccnv 4362 ran crn 4364 Fn wfn 4917 –1-1-onto→wf1o 4921 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 2nd c2nd 5786 freccfrec 6000 1c1 6982 + caddc 6984 ℤcz 8351 ℤ≥cuz 8619 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 |
| This theorem is referenced by: frecuzrdgfn 9414 frecuzrdgcl 9415 frecuzrdgsuc 9417 |
| Copyright terms: Public domain | W3C validator |