Theorem List for Intuitionistic Logic Explorer - 10001-10100 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | cau3 10001* |
Convert between three-quantifier and four-quantifier versions of the
Cauchy criterion. (In particular, the four-quantifier version has no
occurrence of 𝑗 in the assertion, so it can be used
with rexanuz 9874
and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ ∀𝑚 ∈
(ℤ≥‘𝑘)(abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
|
Theorem | cau4 10002* |
Change the base of a Cauchy criterion. (Contributed by Mario
Carneiro, 18-Mar-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 =
(ℤ≥‘𝑁) ⇒ ⊢ (𝑁 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑊 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥))) |
|
Theorem | caubnd2 10003* |
A Cauchy sequence of complex numbers is eventually bounded.
(Contributed by Mario Carneiro, 14-Feb-2014.)
|
⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑦) |
|
Theorem | amgm2 10004 |
Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by
Mario Carneiro, 2-Jul-2014.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)) |
|
Theorem | sqrtthi 10005 |
Square root theorem. Theorem I.35 of [Apostol]
p. 29. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴) · (√‘𝐴)) = 𝐴) |
|
Theorem | sqrtcli 10006 |
The square root of a nonnegative real is a real. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘𝐴) ∈ ℝ) |
|
Theorem | sqrtgt0i 10007 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 < 𝐴 → 0 < (√‘𝐴)) |
|
Theorem | sqrtmsqi 10008 |
Square root of square. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴 · 𝐴)) = 𝐴) |
|
Theorem | sqrtsqi 10009 |
Square root of square. (Contributed by NM, 11-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (√‘(𝐴↑2)) = 𝐴) |
|
Theorem | sqsqrti 10010 |
Square of square root. (Contributed by NM, 11-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → ((√‘𝐴)↑2) = 𝐴) |
|
Theorem | sqrtge0i 10011 |
The square root of a nonnegative real is nonnegative. (Contributed by
NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → 0 ≤ (√‘𝐴)) |
|
Theorem | absidi 10012 |
A nonnegative number is its own absolute value. (Contributed by NM,
2-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (0 ≤ 𝐴 → (abs‘𝐴) = 𝐴) |
|
Theorem | absnidi 10013 |
A negative number is the negative of its own absolute value.
(Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (𝐴 ≤ 0 → (abs‘𝐴) = -𝐴) |
|
Theorem | leabsi 10014 |
A real number is less than or equal to its absolute value. (Contributed
by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ 𝐴 ≤ (abs‘𝐴) |
|
Theorem | absrei 10015 |
Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ
⇒ ⊢ (abs‘𝐴) = (√‘(𝐴↑2)) |
|
Theorem | sqrtpclii 10016 |
The square root of a positive real is a real. (Contributed by Mario
Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ (√‘𝐴) ∈
ℝ |
|
Theorem | sqrtgt0ii 10017 |
The square root of a positive real is positive. (Contributed by NM,
26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 0 < (√‘𝐴) |
|
Theorem | sqrt11i 10018 |
The square root function is one-to-one. (Contributed by NM,
27-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) |
|
Theorem | sqrtmuli 10019 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
|
Theorem | sqrtmulii 10020 |
Square root distributes over multiplication. (Contributed by NM,
30-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 ≤ 𝐴 & ⊢ 0 ≤ 𝐵 ⇒ ⊢ (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)) |
|
Theorem | sqrtmsq2i 10021 |
Relationship between square root and squares. (Contributed by NM,
31-Jul-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐵))) |
|
Theorem | sqrtlei 10022 |
Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
|
Theorem | sqrtlti 10023 |
Square root is strictly monotonic. (Contributed by Roy F. Longton,
8-Aug-2005.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
|
Theorem | abslti 10024 |
Absolute value and 'less than' relation. (Contributed by NM,
6-Apr-2005.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵)) |
|
Theorem | abslei 10025 |
Absolute value and 'less than or equal to' relation. (Contributed by
NM, 6-Apr-2005.)
|
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈
ℝ ⇒ ⊢ ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) |
|
Theorem | absvalsqi 10026 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)) |
|
Theorem | absvalsq2i 10027 |
Square of value of absolute value function. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)) |
|
Theorem | abscli 10028 |
Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) ∈ ℝ |
|
Theorem | absge0i 10029 |
Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ 0 ≤ (abs‘𝐴) |
|
Theorem | absval2i 10030 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
|
Theorem | abs00i 10031 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by NM,
28-Jul-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ ((abs‘𝐴) = 0 ↔ 𝐴 = 0) |
|
Theorem | absgt0api 10032 |
The absolute value of a nonzero number is positive. Remark in [Apostol]
p. 363. (Contributed by NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 # 0 ↔ 0 < (abs‘𝐴)) |
|
Theorem | absnegi 10033 |
Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (abs‘-𝐴) = (abs‘𝐴) |
|
Theorem | abscji 10034 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢
(abs‘(∗‘𝐴)) = (abs‘𝐴) |
|
Theorem | releabsi 10035 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ
⇒ ⊢ (ℜ‘𝐴) ≤ (abs‘𝐴) |
|
Theorem | abssubi 10036 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
|
Theorem | absmuli 10037 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
|
Theorem | sqabsaddi 10038 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | sqabssubi 10039 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | absdivapzi 10040 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrii 10041 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
|
Theorem | abs3difi 10042 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
|
Theorem | abs3lemi 10043 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | rpsqrtcld 10044 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
|
Theorem | sqrtgt0d 10045 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
|
Theorem | absnidd 10046 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
|
Theorem | leabsd 10047 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
|
Theorem | absred 10048 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
|
Theorem | resqrtcld 10049 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
|
Theorem | sqrtmsqd 10050 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
|
Theorem | sqrtsqd 10051 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
|
Theorem | sqrtge0d 10052 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
|
Theorem | absidd 10053 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
|
Theorem | sqrtdivd 10054 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
|
Theorem | sqrtmuld 10055 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
|
Theorem | sqrtsq2d 10056 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
|
Theorem | sqrtled 10057 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
|
Theorem | sqrtltd 10058 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
|
Theorem | sqr11d 10059 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
|
Theorem | absltd 10060 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
|
Theorem | absled 10061 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
|
Theorem | abssubge0d 10062 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
|
Theorem | abssuble0d 10063 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
|
Theorem | absdifltd 10064 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
|
Theorem | absdifled 10065 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
|
Theorem | icodiamlt 10066 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
|
Theorem | abscld 10067 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
|
Theorem | absvalsqd 10068 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
|
Theorem | absvalsq2d 10069 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
|
Theorem | absge0d 10070 |
Absolute value is nonnegative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
|
Theorem | absval2d 10071 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)))) |
|
Theorem | abs00d 10072 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0)
⇒ ⊢ (𝜑 → 𝐴 = 0) |
|
Theorem | absne0d 10073 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) |
|
Theorem | absrpclapd 10074 |
The absolute value of a complex number apart from zero is a positive
real. (Contributed by Jim Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
|
Theorem | absnegd 10075 |
Absolute value of negative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) |
|
Theorem | abscjd 10076 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
|
Theorem | releabsd 10077 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
|
Theorem | absexpd 10078 |
Absolute value of positive integer exponentiation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
|
Theorem | abssubd 10079 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
|
Theorem | absmuld 10080 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
|
Theorem | absdivapd 10081 |
Absolute value distributes over division. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrid 10082 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difd 10083 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs2dif2d 10084 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difabsd 10085 |
Absolute value of difference of absolute values. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs3difd 10086 |
Absolute value of differences around common element. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
|
Theorem | abs3lemd 10087 |
Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < (𝐷 / 2)) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | qdenre 10088* |
The rational numbers are dense in ℝ: any real
number can be
approximated with arbitrary precision by a rational number. For order
theoretic density, see qbtwnre 9265. (Contributed by BJ, 15-Oct-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) →
∃𝑥 ∈ ℚ
(abs‘(𝑥 −
𝐴)) < 𝐵) |
|
3.7.5 The maximum of two real
numbers
|
|
Theorem | maxcom 10089 |
The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
|
Theorem | maxabsle 10090 |
An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon,
20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxleim 10091 |
Value of maximum when we know which number is larger. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
|
Theorem | maxabslemab 10092 |
Lemma for maxabs 10095. A variation of maxleim 10091- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = 𝐵) |
|
Theorem | maxabslemlub 10093 |
Lemma for maxabs 10095. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | maxabslemval 10094* |
Lemma for maxabs 10095. Value of the supremum. (Contributed by
Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
|
Theorem | maxabs 10095 |
Maximum of two real numbers in terms of absolute value. (Contributed by
Jim Kingdon, 20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxcl 10096 |
The maximum of two real numbers is a real number. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
|
Theorem | maxle1 10097 |
The maximum of two reals is no smaller than the first real. Lemma 3.10 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxle2 10098 |
The maximum of two reals is no smaller than the second real. Lemma 3.10
of [Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxleast 10099 |
The maximum of two reals is a least upper bound. Lemma 3.11 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |
|
Theorem | maxleastb 10100 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Jim Kingdon, 31-Jan-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |