HomeHome Intuitionistic Logic Explorer
Theorem List (p. 78 of 108)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremapsqgt0 7701 The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
 
Theoremcru 7702 The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremapreim 7703 Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulreim 7704 Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
 
Theoremapirr 7705 Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.)
(𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴)
 
Theoremapsym 7706 Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐵 # 𝐴))
 
Theoremapcotr 7707 Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶𝐵 # 𝐶)))
 
Theoremapadd1 7708 Addition respects apartness. Analogue of addcan 7288 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶)))
 
Theoremapadd2 7709 Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵)))
 
Theoremaddext 7710 Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5541. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremapneg 7711 Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
 
Theoremmulext1 7712 Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵))
 
Theoremmulext2 7713 Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵))
 
Theoremmulext 7714 Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 5541. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶𝐵 # 𝐷)))
 
Theoremmulap0r 7715 A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0))
 
Theoremmsqge0 7716 A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
 
Theoremmsqge0i 7717 A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
𝐴 ∈ ℝ       0 ≤ (𝐴 · 𝐴)
 
Theoremmsqge0d 7718 A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → 0 ≤ (𝐴 · 𝐴))
 
Theoremmulge0 7719 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0i 7720 The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵))
 
Theoremmulge0d 7721 The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremapti 7722 Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
 
Theoremapne 7723 Apartness implies negated equality. We cannot in general prove the converse, which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵𝐴𝐵))
 
Theoremleltap 7724 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremgt0ap0 7725 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0)
 
Theoremgt0ap0i 7726 Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ       (0 < 𝐴𝐴 # 0)
 
Theoremgt0ap0ii 7727 Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
𝐴 ∈ ℝ    &   0 < 𝐴       𝐴 # 0
 
Theoremgt0ap0d 7728 Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of , not just *. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 < 𝐴)       (𝜑𝐴 # 0)
 
Theoremnegap0 7729 A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.)
(𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0))
 
Theoremltleap 7730 Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴𝐵𝐴 # 𝐵)))
 
Theoremltap 7731 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴)
 
Theoremgtapii 7732 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐵 # 𝐴
 
Theoremltapii 7733 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ    &   𝐴 < 𝐵       𝐴 # 𝐵
 
Theoremltapi 7734 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       (𝐴 < 𝐵𝐵 # 𝐴)
 
Theoremgtapd 7735 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐵 # 𝐴)
 
Theoremltapd 7736 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑𝐴 # 𝐵)
 
Theoremleltapd 7737 '<_' implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 < 𝐵𝐵 # 𝐴))
 
Theoremap0gt0 7738 A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴))
 
Theoremap0gt0d 7739 A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐴 # 0)       (𝜑 → 0 < 𝐴)
 
Theoremsubap0d 7740 Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴𝐵) # 0)
 
3.3.7  Reciprocals
 
Theoremrecextlem1 7741 Lemma for recexap 7743. (Contributed by Eric Schmidt, 23-May-2007.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵)))
 
Theoremrecexaplem2 7742 Lemma for recexap 7743. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0)
 
Theoremrecexap 7743* Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1)
 
Theoremmulap0 7744 The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
 
Theoremmulap0b 7745 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
 
Theoremmulap0i 7746 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐴 # 0    &   𝐵 # 0       (𝐴 · 𝐵) # 0
 
Theoremmulap0bd 7747 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0))
 
Theoremmulap0d 7748 The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 · 𝐵) # 0)
 
Theoremmulap0bad 7749 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7748 and consequence of mulap0bd 7747. (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 · 𝐵) # 0)       (𝜑𝐴 # 0)
 
Theoremmulap0bbd 7750 A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 7748 and consequence of mulap0bd 7747. (Contributed by Jim Kingdon, 24-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑 → (𝐴 · 𝐵) # 0)       (𝜑𝐵 # 0)
 
Theoremmulcanapd 7751 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremmulcanap2d 7752 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremmulcanapad 7753 Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 7751. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremmulcanap2ad 7754 Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 7752. (Contributed by Jim Kingdon, 21-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremmulcanap 7755 Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremmulcanap2 7756 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremmulcanapi 7757 Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐶 # 0       ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)
 
Theoremmuleqadd 7758 Property of numbers whose product equals their sum. Equation 5 of [Kreyszig] p. 12. (Contributed by NM, 13-Nov-2006.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 + 𝐵) ↔ ((𝐴 − 1) · (𝐵 − 1)) = 1))
 
Theoremreceuap 7759* Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
 
3.3.8  Division
 
Syntaxcdiv 7760 Extend class notation to include division.
class /
 
Definitiondf-div 7761* Define division. Theorem divmulap 7763 relates it to multiplication, and divclap 7766 and redivclap 7819 prove its closure laws. (Contributed by NM, 2-Feb-1995.) (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
/ = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
 
Theoremdivvalap 7762* Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
 
Theoremdivmulap 7763 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴))
 
Theoremdivmulap2 7764 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))
 
Theoremdivmulap3 7765 Relationship between division and multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))
 
Theoremdivclap 7766 Closure law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ)
 
Theoremrecclap 7767 Closure law for reciprocal. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ)
 
Theoremdivcanap2 7768 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
 
Theoremdivcanap1 7769 A cancellation law for division. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
 
Theoremdiveqap0 7770 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))
 
Theoremdivap0b 7771 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0))
 
Theoremdivap0 7772 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 22-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) # 0)
 
Theoremrecap0 7773 The reciprocal of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0)
 
Theoremrecidap 7774 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1)
 
Theoremrecidap2 7775 Multiplication of a number and its reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1)
 
Theoremdivrecap 7776 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
 
Theoremdivrecap2 7777 Relationship between division and reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴))
 
Theoremdivassap 7778 An associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
 
Theoremdiv23ap 7779 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
 
Theoremdiv32ap 7780 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵)))
 
Theoremdiv13ap 7781 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))
 
Theoremdiv12ap 7782 A commutative/associative law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremdivmulassap 7783 An associative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷)))
 
Theoremdivmulasscomap 7784 An associative/commutative law for division and multiplication. (Contributed by Jim Kingdon, 24-Jan-2022.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷)))
 
Theoremdivdirap 7785 Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
 
Theoremdivcanap3 7786 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴)
 
Theoremdivcanap4 7787 A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
 
Theoremdiv11ap 7788 One-to-one relationship for division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremdividap 7789 A number divided by itself is one. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 / 𝐴) = 1)
 
Theoremdiv0ap 7790 Division into zero is zero. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (0 / 𝐴) = 0)
 
Theoremdiv1 7791 A number divided by 1 is itself. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
 
Theorem1div1e1 7792 1 divided by 1 is 1 (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
(1 / 1) = 1
 
Theoremdiveqap1 7793 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
 
Theoremdivnegap 7794 Move negative sign inside of a division. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
 
Theoremmuldivdirap 7795 Distribution of division over addition with a multiplication. (Contributed by Jim Kingdon, 11-Nov-2021.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶)))
 
Theoremdivsubdirap 7796 Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
 
Theoremrecrecap 7797 A number is equal to the reciprocal of its reciprocal. (Contributed by Jim Kingdon, 25-Feb-2020.)
((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (1 / 𝐴)) = 𝐴)
 
Theoremrec11ap 7798 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremrec11rap 7799 Mutual reciprocals. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = 𝐵 ↔ (1 / 𝐵) = 𝐴))
 
Theoremdivmuldivap 7800 Multiplication of two ratios. (Contributed by Jim Kingdon, 25-Feb-2020.)
(((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >