ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  permnn GIF version

Theorem permnn 9698
Description: The number of permutations of 𝑁𝑅 objects from a collection of 𝑁 objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
Assertion
Ref Expression
permnn (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)

Proof of Theorem permnn
StepHypRef Expression
1 elfznn0 9130 . . 3 (𝑅 ∈ (0...𝑁) → 𝑅 ∈ ℕ0)
21faccld 9663 . 2 (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℕ)
3 fznn0sub 9075 . . . 4 (𝑅 ∈ (0...𝑁) → (𝑁𝑅) ∈ ℕ0)
43faccld 9663 . . 3 (𝑅 ∈ (0...𝑁) → (!‘(𝑁𝑅)) ∈ ℕ)
54, 2nnmulcld 8087 . 2 (𝑅 ∈ (0...𝑁) → ((!‘(𝑁𝑅)) · (!‘𝑅)) ∈ ℕ)
6 elfz3nn0 9131 . . 3 (𝑅 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
7 faccl 9662 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
87nncnd 8053 . . 3 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
96, 8syl 14 . 2 (𝑅 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
104nncnd 8053 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘(𝑁𝑅)) ∈ ℂ)
112nncnd 8053 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘𝑅) ∈ ℂ)
122nnap0d 8084 . . . 4 (𝑅 ∈ (0...𝑁) → (!‘𝑅) # 0)
1310, 11, 12divcanap4d 7883 . . 3 (𝑅 ∈ (0...𝑁) → (((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) = (!‘(𝑁𝑅)))
1413, 4eqeltrd 2155 . 2 (𝑅 ∈ (0...𝑁) → (((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ)
15 bcval2 9677 . . 3 (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) = ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))))
16 bccl2 9695 . . 3 (𝑅 ∈ (0...𝑁) → (𝑁C𝑅) ∈ ℕ)
1715, 16eqeltrrd 2156 . 2 (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))) ∈ ℕ)
18 nndivtr 8080 . 2 ((((!‘𝑅) ∈ ℕ ∧ ((!‘(𝑁𝑅)) · (!‘𝑅)) ∈ ℕ ∧ (!‘𝑁) ∈ ℂ) ∧ ((((!‘(𝑁𝑅)) · (!‘𝑅)) / (!‘𝑅)) ∈ ℕ ∧ ((!‘𝑁) / ((!‘(𝑁𝑅)) · (!‘𝑅))) ∈ ℕ)) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
192, 5, 9, 14, 17, 18syl32anc 1177 1 (𝑅 ∈ (0...𝑁) → ((!‘𝑁) / (!‘𝑅)) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  cfv 4922  (class class class)co 5532  cc 6979  0cc0 6981   · cmul 6986  cmin 7279   / cdiv 7760  cn 8039  0cn0 8288  ...cfz 9029  !cfa 9652  Ccbc 9674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-iseq 9432  df-fac 9653  df-bc 9675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator