ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qcn GIF version

Theorem qcn 8719
Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
qcn (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)

Proof of Theorem qcn
StepHypRef Expression
1 qsscn 8716 . 2 ℚ ⊆ ℂ
21sseli 2995 1 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  cc 6979  cq 8704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-z 8352  df-q 8705
This theorem is referenced by:  qsubcl  8723  qapne  8724  qdivcl  8728  qrevaddcl  8729  irradd  8731  irrmul  8732  qavgle  9267  divfl0  9298  flqzadd  9300  intqfrac2  9321  flqdiv  9323  modqvalr  9327  flqpmodeq  9329  modq0  9331  mulqmod0  9332  negqmod0  9333  modqlt  9335  modqdiffl  9337  modqfrac  9339  flqmod  9340  intqfrac  9341  modqmulnn  9344  modqvalp1  9345  modqid  9351  modqcyc  9361  modqcyc2  9362  modqadd1  9363  modqaddabs  9364  modqmuladdnn0  9370  qnegmod  9371  modqadd2mod  9376  modqm1p1mod0  9377  modqmul1  9379  modqnegd  9381  modqadd12d  9382  modqsub12d  9383  q2txmodxeq0  9386  q2submod  9387  modqmulmodr  9392  modqaddmulmod  9393  modqdi  9394  modqsubdir  9395  modqeqmodmin  9396  qsqcl  9547  bezoutlemnewy  10385  sqrt2irraplemnn  10557  ex-ceil  10564  qdencn  10785
  Copyright terms: Public domain W3C validator