ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep GIF version

Theorem rebtwn2zlemstep 9261
Description: Lemma for rebtwn2z 9263. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐾

Proof of Theorem rebtwn2zlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 peano2z 8387 . . . . . . . 8 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℤ)
21ad3antlr 476 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) ∈ ℤ)
3 simpr 108 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) < 𝐴)
4 simplrr 502 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
5 simpllr 500 . . . . . . . . . . 11 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℤ)
65zcnd 8470 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℂ)
7 1cnd 7135 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 1 ∈ ℂ)
8 eluzelcn 8630 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℂ)
98ad4antr 477 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐾 ∈ ℂ)
106, 7, 9addassd 7141 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (1 + 𝐾)))
117, 9addcomd 7259 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (1 + 𝐾) = (𝐾 + 1))
1211oveq2d 5548 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + (1 + 𝐾)) = (𝑚 + (𝐾 + 1)))
1310, 12eqtrd 2113 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (𝐾 + 1)))
144, 13breqtrrd 3811 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < ((𝑚 + 1) + 𝐾))
15 breq1 3788 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝑗 < 𝐴 ↔ (𝑚 + 1) < 𝐴))
16 oveq1 5539 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (𝑗 + 𝐾) = ((𝑚 + 1) + 𝐾))
1716breq2d 3797 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 1) + 𝐾)))
1815, 17anbi12d 456 . . . . . . . 8 (𝑗 = (𝑚 + 1) → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))))
1918rspcev 2701 . . . . . . 7 (((𝑚 + 1) ∈ ℤ ∧ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
202, 3, 14, 19syl12anc 1167 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
21 simpllr 500 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
22 simplrl 501 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 < 𝐴)
23 simpr 108 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
24 breq1 3788 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗 < 𝐴𝑚 < 𝐴))
25 oveq1 5539 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
2625breq2d 3797 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
2724, 26anbi12d 456 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))))
2827rspcev 2701 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
2921, 22, 23, 28syl12anc 1167 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
30 1red 7134 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 ∈ ℝ)
31 eluzelre 8629 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
3231ad3antrrr 475 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℝ)
33 simplr 496 . . . . . . . . 9 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
3433zred 8469 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℝ)
35 1z 8377 . . . . . . . . . . 11 1 ∈ ℤ
36 eluzp1l 8643 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(1 + 1))) → 1 < 𝐾)
3735, 36mpan 414 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘(1 + 1)) → 1 < 𝐾)
38 df-2 8098 . . . . . . . . . . 11 2 = (1 + 1)
3938fveq2i 5201 . . . . . . . . . 10 (ℤ‘2) = (ℤ‘(1 + 1))
4037, 39eleq2s 2173 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
4140ad3antrrr 475 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 < 𝐾)
4230, 32, 34, 41ltadd2dd 7526 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) < (𝑚 + 𝐾))
4334, 30readdcld 7148 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) ∈ ℝ)
4434, 32readdcld 7148 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℝ)
45 simpllr 500 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐴 ∈ ℝ)
46 axltwlin 7180 . . . . . . . 8 (((𝑚 + 1) ∈ ℝ ∧ (𝑚 + 𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4743, 44, 45, 46syl3anc 1169 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4842, 47mpd 13 . . . . . 6 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾)))
4920, 29, 48mpjaodan 744 . . . . 5 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 113 . . . 4 (((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) → ((𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2477 . . 3 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
52513impia 1135 . 2 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 3788 . . . 4 (𝑚 = 𝑗 → (𝑚 < 𝐴𝑗 < 𝐴))
54 oveq1 5539 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 3797 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 456 . . 3 (𝑚 = 𝑗 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2578 . 2 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 132 1 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  w3a 919   = wceq 1284  wcel 1433  wrex 2349   class class class wbr 3785  cfv 4922  (class class class)co 5532  cc 6979  cr 6980  1c1 6982   + caddc 6984   < clt 7153  2c2 8089  cz 8351  cuz 8619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-2 8098  df-n0 8289  df-z 8352  df-uz 8620
This theorem is referenced by:  rebtwn2zlemshrink  9262
  Copyright terms: Public domain W3C validator