| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cvratex | Structured version Visualization version Unicode version | ||
| Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1cvratex.b |
|
| 1cvratex.s |
|
| 1cvratex.u |
|
| 1cvratex.c |
|
| 1cvratex.a |
|
| Ref | Expression |
|---|---|
| 1cvratex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1061 |
. . 3
| |
| 2 | 1cvratex.b |
. . . . 5
| |
| 3 | 1cvratex.u |
. . . . 5
| |
| 4 | eqid 2622 |
. . . . 5
| |
| 5 | 1cvratex.c |
. . . . 5
| |
| 6 | 1cvratex.a |
. . . . 5
| |
| 7 | 2, 3, 4, 5, 6 | 1cvrco 34758 |
. . . 4
|
| 8 | 7 | biimp3a 1432 |
. . 3
|
| 9 | eqid 2622 |
. . . 4
| |
| 10 | 9, 5, 6 | 2dim 34756 |
. . 3
|
| 11 | 1, 8, 10 | syl2anc 693 |
. 2
|
| 12 | simp11 1091 |
. . . . . 6
| |
| 13 | hlop 34649 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
|
| 15 | hllat 34650 |
. . . . . . . . 9
| |
| 16 | 12, 15 | syl 17 |
. . . . . . . 8
|
| 17 | simp12 1092 |
. . . . . . . . 9
| |
| 18 | 2, 4 | opoccl 34481 |
. . . . . . . . 9
|
| 19 | 14, 17, 18 | syl2anc 693 |
. . . . . . . 8
|
| 20 | simp2l 1087 |
. . . . . . . . 9
| |
| 21 | 2, 6 | atbase 34576 |
. . . . . . . . 9
|
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
|
| 23 | 2, 9 | latjcl 17051 |
. . . . . . . 8
|
| 24 | 16, 19, 22, 23 | syl3anc 1326 |
. . . . . . 7
|
| 25 | 2, 4 | opoccl 34481 |
. . . . . . 7
|
| 26 | 14, 24, 25 | syl2anc 693 |
. . . . . 6
|
| 27 | simp2r 1088 |
. . . . . . . . . . . . 13
| |
| 28 | 2, 6 | atbase 34576 |
. . . . . . . . . . . . 13
|
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . 12
|
| 30 | 2, 9 | latjcl 17051 |
. . . . . . . . . . . 12
|
| 31 | 16, 24, 29, 30 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 32 | 2, 4 | opoccl 34481 |
. . . . . . . . . . 11
|
| 33 | 14, 31, 32 | syl2anc 693 |
. . . . . . . . . 10
|
| 34 | eqid 2622 |
. . . . . . . . . . 11
| |
| 35 | eqid 2622 |
. . . . . . . . . . 11
| |
| 36 | 2, 34, 35 | op0le 34473 |
. . . . . . . . . 10
|
| 37 | 14, 33, 36 | syl2anc 693 |
. . . . . . . . 9
|
| 38 | simp3r 1090 |
. . . . . . . . . . 11
| |
| 39 | 1cvratex.s |
. . . . . . . . . . . 12
| |
| 40 | 2, 39, 5 | cvrlt 34557 |
. . . . . . . . . . 11
|
| 41 | 12, 24, 31, 38, 40 | syl31anc 1329 |
. . . . . . . . . 10
|
| 42 | 2, 39, 4 | opltcon3b 34491 |
. . . . . . . . . . 11
|
| 43 | 14, 24, 31, 42 | syl3anc 1326 |
. . . . . . . . . 10
|
| 44 | 41, 43 | mpbid 222 |
. . . . . . . . 9
|
| 45 | hlpos 34652 |
. . . . . . . . . . 11
| |
| 46 | 12, 45 | syl 17 |
. . . . . . . . . 10
|
| 47 | 2, 35 | op0cl 34471 |
. . . . . . . . . . 11
|
| 48 | 14, 47 | syl 17 |
. . . . . . . . . 10
|
| 49 | 2, 34, 39 | plelttr 16972 |
. . . . . . . . . 10
|
| 50 | 46, 48, 33, 26, 49 | syl13anc 1328 |
. . . . . . . . 9
|
| 51 | 37, 44, 50 | mp2and 715 |
. . . . . . . 8
|
| 52 | 39 | pltne 16962 |
. . . . . . . . 9
|
| 53 | 12, 48, 26, 52 | syl3anc 1326 |
. . . . . . . 8
|
| 54 | 51, 53 | mpd 15 |
. . . . . . 7
|
| 55 | 54 | necomd 2849 |
. . . . . 6
|
| 56 | 2, 34, 35, 6 | atle 34722 |
. . . . . 6
|
| 57 | 12, 26, 55, 56 | syl3anc 1326 |
. . . . 5
|
| 58 | simp3l 1089 |
. . . . . . . . . . 11
| |
| 59 | 2, 39, 5 | cvrlt 34557 |
. . . . . . . . . . 11
|
| 60 | 12, 19, 24, 58, 59 | syl31anc 1329 |
. . . . . . . . . 10
|
| 61 | 2, 39, 4 | opltcon3b 34491 |
. . . . . . . . . . 11
|
| 62 | 14, 19, 24, 61 | syl3anc 1326 |
. . . . . . . . . 10
|
| 63 | 60, 62 | mpbid 222 |
. . . . . . . . 9
|
| 64 | 2, 4 | opococ 34482 |
. . . . . . . . . 10
|
| 65 | 14, 17, 64 | syl2anc 693 |
. . . . . . . . 9
|
| 66 | 63, 65 | breqtrd 4679 |
. . . . . . . 8
|
| 67 | 66 | adantr 481 |
. . . . . . 7
|
| 68 | simpl11 1136 |
. . . . . . . . 9
| |
| 69 | 68, 45 | syl 17 |
. . . . . . . 8
|
| 70 | 2, 6 | atbase 34576 |
. . . . . . . . 9
|
| 71 | 70 | adantl 482 |
. . . . . . . 8
|
| 72 | 26 | adantr 481 |
. . . . . . . 8
|
| 73 | simpl12 1137 |
. . . . . . . 8
| |
| 74 | 2, 34, 39 | plelttr 16972 |
. . . . . . . 8
|
| 75 | 69, 71, 72, 73, 74 | syl13anc 1328 |
. . . . . . 7
|
| 76 | 67, 75 | mpan2d 710 |
. . . . . 6
|
| 77 | 76 | reximdva 3017 |
. . . . 5
|
| 78 | 57, 77 | mpd 15 |
. . . 4
|
| 79 | 78 | 3exp 1264 |
. . 3
|
| 80 | 79 | rexlimdvv 3037 |
. 2
|
| 81 | 11, 80 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 |
| This theorem is referenced by: 1cvratlt 34760 lhpexlt 35288 |
| Copyright terms: Public domain | W3C validator |