MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2basgen Structured version   Visualization version   Unicode version

Theorem 2basgen 20794
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
2basgen  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  =  ( topGen `  C )
)

Proof of Theorem 2basgen
StepHypRef Expression
1 fvex 6201 . . . . 5  |-  ( topGen `  B )  e.  _V
21ssex 4802 . . . 4  |-  ( C 
C_  ( topGen `  B
)  ->  C  e.  _V )
32adantl 482 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  C  e.  _V )
4 simpl 473 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  B  C_  C )
5 tgss 20772 . . 3  |-  ( ( C  e.  _V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
63, 4, 5syl2anc 693 . 2  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  C_  ( topGen `  C )
)
7 simpr 477 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  C  C_  ( topGen `  B )
)
8 ssexg 4804 . . . . 5  |-  ( ( B  C_  C  /\  C  e.  _V )  ->  B  e.  _V )
92, 8sylan2 491 . . . 4  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  B  e.  _V )
10 tgss3 20790 . . . 4  |-  ( ( C  e.  _V  /\  B  e.  _V )  ->  ( ( topGen `  C
)  C_  ( topGen `  B )  <->  C  C_  ( topGen `
 B ) ) )
113, 9, 10syl2anc 693 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  (
( topGen `  C )  C_  ( topGen `  B )  <->  C 
C_  ( topGen `  B
) ) )
127, 11mpbird 247 . 2  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 C )  C_  ( topGen `  B )
)
136, 12eqssd 3620 1  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  =  ( topGen `  C )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ` cfv 5888   topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104
This theorem is referenced by:  leordtval2  21016  2ndcsb  21252  txbasval  21409  prdsxmslem2  22334  tgioo  22599  tgqioo  22603
  Copyright terms: Public domain W3C validator