MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndcsb Structured version   Visualization version   Unicode version

Theorem 2ndcsb 21252
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
2ndcsb  |-  ( J  e.  2ndc  <->  E. x ( x  ~<_  om  /\  ( topGen `  ( fi `  x
) )  =  J ) )
Distinct variable group:    x, J

Proof of Theorem 2ndcsb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 is2ndc 21249 . . 3  |-  ( J  e.  2ndc  <->  E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `
 x )  =  J ) )
2 df-rex 2918 . . . 4  |-  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J )  <->  E. x ( x  e.  TopBases  /\  ( x  ~<_  om  /\  ( topGen `  x
)  =  J ) ) )
3 simprl 794 . . . . . 6  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  ->  x  ~<_  om )
4 ssfii 8325 . . . . . . . . 9  |-  ( x  e.  TopBases  ->  x  C_  ( fi `  x ) )
54adantr 481 . . . . . . . 8  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  ->  x  C_  ( fi `  x ) )
6 fvex 6201 . . . . . . . . . 10  |-  ( topGen `  x )  e.  _V
7 bastg 20770 . . . . . . . . . . 11  |-  ( x  e.  TopBases  ->  x  C_  ( topGen `
 x ) )
87adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  ->  x  C_  ( topGen `  x
) )
9 fiss 8330 . . . . . . . . . 10  |-  ( ( ( topGen `  x )  e.  _V  /\  x  C_  ( topGen `  x )
)  ->  ( fi `  x )  C_  ( fi `  ( topGen `  x
) ) )
106, 8, 9sylancr 695 . . . . . . . . 9  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( fi `  x
)  C_  ( fi `  ( topGen `  x )
) )
11 tgcl 20773 . . . . . . . . . . 11  |-  ( x  e.  TopBases  ->  ( topGen `  x
)  e.  Top )
1211adantr 481 . . . . . . . . . 10  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( topGen `  x )  e.  Top )
13 fitop 20705 . . . . . . . . . 10  |-  ( (
topGen `  x )  e. 
Top  ->  ( fi `  ( topGen `  x )
)  =  ( topGen `  x ) )
1412, 13syl 17 . . . . . . . . 9  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( fi `  ( topGen `
 x ) )  =  ( topGen `  x
) )
1510, 14sseqtrd 3641 . . . . . . . 8  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( fi `  x
)  C_  ( topGen `  x ) )
16 2basgen 20794 . . . . . . . 8  |-  ( ( x  C_  ( fi `  x )  /\  ( fi `  x )  C_  ( topGen `  x )
)  ->  ( topGen `  x )  =  (
topGen `  ( fi `  x ) ) )
175, 15, 16syl2anc 693 . . . . . . 7  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( topGen `  x )  =  ( topGen `  ( fi `  x ) ) )
18 simprr 796 . . . . . . 7  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( topGen `  x )  =  J )
1917, 18eqtr3d 2658 . . . . . 6  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( topGen `  ( fi `  x ) )  =  J )
203, 19jca 554 . . . . 5  |-  ( ( x  e.  TopBases  /\  (
x  ~<_  om  /\  ( topGen `
 x )  =  J ) )  -> 
( x  ~<_  om  /\  ( topGen `  ( fi `  x ) )  =  J ) )
2120eximi 1762 . . . 4  |-  ( E. x ( x  e.  TopBases 
/\  ( x  ~<_  om 
/\  ( topGen `  x
)  =  J ) )  ->  E. x
( x  ~<_  om  /\  ( topGen `  ( fi `  x ) )  =  J ) )
222, 21sylbi 207 . . 3  |-  ( E. x  e.  TopBases  ( x  ~<_  om  /\  ( topGen `  x )  =  J )  ->  E. x
( x  ~<_  om  /\  ( topGen `  ( fi `  x ) )  =  J ) )
231, 22sylbi 207 . 2  |-  ( J  e.  2ndc  ->  E. x
( x  ~<_  om  /\  ( topGen `  ( fi `  x ) )  =  J ) )
24 fibas 20781 . . . . 5  |-  ( fi
`  x )  e.  TopBases
25 simpl 473 . . . . . . 7  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  x  ~<_  om )
26 vex 3203 . . . . . . . 8  |-  x  e. 
_V
27 fictb 9067 . . . . . . . 8  |-  ( x  e.  _V  ->  (
x  ~<_  om  <->  ( fi `  x )  ~<_  om )
)
2826, 27ax-mp 5 . . . . . . 7  |-  ( x  ~<_  om  <->  ( fi `  x )  ~<_  om )
2925, 28sylib 208 . . . . . 6  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  ( fi `  x )  ~<_  om )
30 simpr 477 . . . . . 6  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  ( topGen `
 ( fi `  x ) )  =  J )
3129, 30jca 554 . . . . 5  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  (
( fi `  x
)  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J ) )
32 breq1 4656 . . . . . . 7  |-  ( y  =  ( fi `  x )  ->  (
y  ~<_  om  <->  ( fi `  x )  ~<_  om )
)
33 fveq2 6191 . . . . . . . 8  |-  ( y  =  ( fi `  x )  ->  ( topGen `
 y )  =  ( topGen `  ( fi `  x ) ) )
3433eqeq1d 2624 . . . . . . 7  |-  ( y  =  ( fi `  x )  ->  (
( topGen `  y )  =  J  <->  ( topGen `  ( fi `  x ) )  =  J ) )
3532, 34anbi12d 747 . . . . . 6  |-  ( y  =  ( fi `  x )  ->  (
( y  ~<_  om  /\  ( topGen `  y )  =  J )  <->  ( ( fi `  x )  ~<_  om 
/\  ( topGen `  ( fi `  x ) )  =  J ) ) )
3635rspcev 3309 . . . . 5  |-  ( ( ( fi `  x
)  e.  TopBases  /\  (
( fi `  x
)  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J ) )  ->  E. y  e.  TopBases  ( y  ~<_  om  /\  ( topGen `  y )  =  J ) )
3724, 31, 36sylancr 695 . . . 4  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  E. y  e. 
TopBases  ( y  ~<_  om  /\  ( topGen `  y )  =  J ) )
38 is2ndc 21249 . . . 4  |-  ( J  e.  2ndc  <->  E. y  e.  TopBases  ( y  ~<_  om  /\  ( topGen `
 y )  =  J ) )
3937, 38sylibr 224 . . 3  |-  ( ( x  ~<_  om  /\  ( topGen `
 ( fi `  x ) )  =  J )  ->  J  e.  2ndc )
4039exlimiv 1858 . 2  |-  ( E. x ( x  ~<_  om 
/\  ( topGen `  ( fi `  x ) )  =  J )  ->  J  e.  2ndc )
4123, 40impbii 199 1  |-  ( J  e.  2ndc  <->  E. x ( x  ~<_  om  /\  ( topGen `  ( fi `  x
) )  =  J ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653   ` cfv 5888   omcom 7065    ~<_ cdom 7953   ficfi 8316   topGenctg 16098   Topctop 20698   TopBasesctb 20749   2ndcc2ndc 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-card 8765  df-acn 8768  df-cda 8990  df-topgen 16104  df-top 20699  df-bases 20750  df-2ndc 21243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator