| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oconcl | Structured version Visualization version Unicode version | ||
| Description: Closure of the pair
swapping function on |
| Ref | Expression |
|---|---|
| 2oconcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4197 |
. . . . 5
| |
| 2 | difeq2 3722 |
. . . . . . . 8
| |
| 3 | dif0 3950 |
. . . . . . . 8
| |
| 4 | 2, 3 | syl6eq 2672 |
. . . . . . 7
|
| 5 | difeq2 3722 |
. . . . . . . 8
| |
| 6 | difid 3948 |
. . . . . . . 8
| |
| 7 | 5, 6 | syl6eq 2672 |
. . . . . . 7
|
| 8 | 4, 7 | orim12i 538 |
. . . . . 6
|
| 9 | 8 | orcomd 403 |
. . . . 5
|
| 10 | 1, 9 | syl 17 |
. . . 4
|
| 11 | 1on 7567 |
. . . . . 6
| |
| 12 | difexg 4808 |
. . . . . 6
| |
| 13 | 11, 12 | ax-mp 5 |
. . . . 5
|
| 14 | 13 | elpr 4198 |
. . . 4
|
| 15 | 10, 14 | sylibr 224 |
. . 3
|
| 16 | df2o3 7573 |
. . 3
| |
| 17 | 15, 16 | syl6eleqr 2712 |
. 2
|
| 18 | 17, 16 | eleq2s 2719 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-suc 5729 df-1o 7560 df-2o 7561 |
| This theorem is referenced by: efgmf 18126 efgmnvl 18127 efglem 18129 frgpuplem 18185 |
| Copyright terms: Public domain | W3C validator |