Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  endofsegid Structured version   Visualization version   Unicode version

Theorem endofsegid 32192
Description: If  A,  B, and  C fall in order on a line, and  A B and  A C are congruent, then  C  =  B. (Contributed by Scott Fenton, 7-Oct-2013.)
Assertion
Ref Expression
endofsegid  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >. )  ->  C  =  B ) )

Proof of Theorem endofsegid
StepHypRef Expression
1 simpl 473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  N  e.  NN )
2 simpr1 1067 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  A  e.  ( EE `  N ) )
3 simpr3 1069 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  C  e.  ( EE `  N ) )
4 simpr2 1068 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  B  e.  ( EE `  N ) )
5 cgrcom 32097 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) ) )  ->  ( <. A ,  C >.Cgr <. A ,  B >.  <->  <. A ,  B >.Cgr <. A ,  C >. ) )
61, 2, 3, 2, 4, 5syl122anc 1335 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  <->  <. A ,  B >.Cgr <. A ,  C >. ) )
76biimpd 219 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  ->  <. A ,  B >.Cgr <. A ,  C >. ) )
8 idd 24 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  ->  <. A ,  C >.Cgr <. A ,  B >. ) )
9 axcgrrflx 25794 . . . . . . . 8  |-  ( ( N  e.  NN  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  <. B ,  C >.Cgr <. C ,  B >. )
1093adant3r1 1274 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  ->  <. B ,  C >.Cgr <. C ,  B >. )
1110a1d 25 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  ->  <. B ,  C >.Cgr <. C ,  B >. ) )
127, 8, 113jcad 1243 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  -> 
( <. A ,  B >.Cgr
<. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >.  /\ 
<. B ,  C >.Cgr <. C ,  B >. ) ) )
13 3ancomb 1047 . . . . . . 7  |-  ( ( A  e.  ( EE
`  N )  /\  C  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
14 brcgr3 32153 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >.  <->  ( <. A ,  B >.Cgr <. A ,  C >.  /\  <. A ,  C >.Cgr <. A ,  B >.  /\  <. B ,  C >.Cgr
<. C ,  B >. ) ) )
1513, 14syl3an3br 1367 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )  ->  ( <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >.  <->  ( <. A ,  B >.Cgr <. A ,  C >.  /\  <. A ,  C >.Cgr <. A ,  B >.  /\  <. B ,  C >.Cgr
<. C ,  B >. ) ) )
16153anidm23 1385 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >.  <->  (
<. A ,  B >.Cgr <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >.  /\ 
<. B ,  C >.Cgr <. C ,  B >. ) ) )
1712, 16sylibrd 249 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( <. A ,  C >.Cgr
<. A ,  B >.  ->  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >. )
)
18 btwnxfr 32163 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >. )  ->  C  Btwn  <. A ,  B >. ) )
1913, 18syl3an3br 1367 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  <. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >. )  ->  C  Btwn  <. A ,  B >. ) )
20193anidm23 1385 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  <. B ,  C >. >.Cgr3 <. A ,  <. C ,  B >. >. )  ->  C  Btwn  <. A ,  B >. ) )
2117, 20sylan2d 499 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >. )  ->  C  Btwn  <. A ,  B >. ) )
22 simpl 473 . . . 4  |-  ( ( B  Btwn  <. A ,  C >.  /\  <. A ,  C >.Cgr <. A ,  B >. )  ->  B  Btwn  <. A ,  C >. )
2322a1i 11 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >. )  ->  B  Btwn  <. A ,  C >. ) )
2421, 23jcad 555 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >. )  ->  ( C  Btwn  <. A ,  B >.  /\  B  Btwn  <. A ,  C >. ) ) )
25 3anrot 1043 . . 3  |-  ( ( C  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) )  <->  ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )
26 btwnswapid2 32125 . . 3  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\  B  Btwn  <. A ,  C >. )  ->  C  =  B ) )
2725, 26sylan2br 493 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( C  Btwn  <. A ,  B >.  /\  B  Btwn  <. A ,  C >. )  ->  C  =  B ) )
2824, 27syld 47 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) ) )  -> 
( ( B  Btwn  <. A ,  C >.  /\ 
<. A ,  C >.Cgr <. A ,  B >. )  ->  C  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888   NNcn 11020   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770  Cgr3ccgr3 32143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773  df-ofs 32090  df-ifs 32147  df-cgr3 32148
This theorem is referenced by:  endofsegidand  32193
  Copyright terms: Public domain W3C validator