![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version Unicode version |
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
6p1e7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 11084 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2631 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-7 11084 |
This theorem is referenced by: 9t8e72 11669 s7len 13647 37prm 15828 163prm 15832 317prm 15833 631prm 15834 1259lem1 15838 1259lem3 15840 1259lem4 15841 1259lem5 15842 2503lem1 15844 2503lem2 15845 2503lem3 15846 2503prm 15847 4001lem1 15848 4001lem4 15851 4001prm 15852 log2ublem3 24675 log2ub 24676 hgt750lemd 30726 hgt750lem2 30730 fmtno2 41462 fmtno3 41463 fmtno4 41464 fmtno5lem4 41468 fmtno5 41469 fmtno4nprmfac193 41486 fmtno5fac 41494 127prm 41515 mod42tp1mod8 41519 gbowge7 41651 sbgoldbwt 41665 nnsum3primesle9 41682 |
Copyright terms: Public domain | W3C validator |