MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem4 Structured version   Visualization version   Unicode version

Theorem 4001lem4 15851
Description: Lemma for 4001prm 15852. Calculate the GCD of  2 ^ 8 0 0  -  1  ==  2
3 1 0 with  N  =  4 0 0 1. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1  |-  N  = ;;; 4 0 0 1
Assertion
Ref Expression
4001lem4  |-  ( ( ( 2 ^;; 8 0 0 )  - 
1 )  gcd  N
)  =  1

Proof of Theorem 4001lem4
StepHypRef Expression
1 2nn 11185 . . . 4  |-  2  e.  NN
2 8nn0 11315 . . . . . 6  |-  8  e.  NN0
3 0nn0 11307 . . . . . 6  |-  0  e.  NN0
42, 3deccl 11512 . . . . 5  |- ; 8 0  e.  NN0
54, 3deccl 11512 . . . 4  |- ;; 8 0 0  e.  NN0
6 nnexpcl 12873 . . . 4  |-  ( ( 2  e.  NN  /\ ;; 8 0 0  e. 
NN0 )  ->  (
2 ^;; 8 0 0 )  e.  NN )
71, 5, 6mp2an 708 . . 3  |-  ( 2 ^;; 8 0 0 )  e.  NN
8 nnm1nn0 11334 . . 3  |-  ( ( 2 ^;; 8 0 0 )  e.  NN  ->  ( (
2 ^;; 8 0 0 )  - 
1 )  e.  NN0 )
97, 8ax-mp 5 . 2  |-  ( ( 2 ^;; 8 0 0 )  - 
1 )  e.  NN0
10 2nn0 11309 . . . . 5  |-  2  e.  NN0
11 3nn0 11310 . . . . 5  |-  3  e.  NN0
1210, 11deccl 11512 . . . 4  |- ; 2 3  e.  NN0
13 1nn0 11308 . . . 4  |-  1  e.  NN0
1412, 13deccl 11512 . . 3  |- ;; 2 3 1  e.  NN0
1514, 3deccl 11512 . 2  |- ;;; 2 3 1 0  e.  NN0
16 4001prm.1 . . 3  |-  N  = ;;; 4 0 0 1
17 4nn0 11311 . . . . . 6  |-  4  e.  NN0
1817, 3deccl 11512 . . . . 5  |- ; 4 0  e.  NN0
1918, 3deccl 11512 . . . 4  |- ;; 4 0 0  e.  NN0
20 1nn 11031 . . . 4  |-  1  e.  NN
2119, 20decnncl 11518 . . 3  |- ;;; 4 0 0 1  e.  NN
2216, 21eqeltri 2697 . 2  |-  N  e.  NN
23164001lem2 15849 . . 3  |-  ( ( 2 ^;; 8 0 0 )  mod 
N )  =  (;;; 2 3 1 1  mod 
N )
24 0p1e1 11132 . . . 4  |-  ( 0  +  1 )  =  1
25 eqid 2622 . . . 4  |- ;;; 2 3 1 0  = ;;; 2 3 1 0
2614, 3, 24, 25decsuc 11535 . . 3  |-  (;;; 2 3 1 0  +  1 )  = ;;; 2 3 1 1
2722, 7, 13, 15, 23, 26modsubi 15776 . 2  |-  ( ( ( 2 ^;; 8 0 0 )  - 
1 )  mod  N
)  =  (;;; 2 3 1 0  mod  N )
28 6nn0 11313 . . . . . 6  |-  6  e.  NN0
2913, 28deccl 11512 . . . . 5  |- ; 1 6  e.  NN0
30 9nn0 11316 . . . . 5  |-  9  e.  NN0
3129, 30deccl 11512 . . . 4  |- ;; 1 6 9  e.  NN0
3231, 13deccl 11512 . . 3  |- ;;; 1 6 9 1  e.  NN0
3328, 13deccl 11512 . . . . 5  |- ; 6 1  e.  NN0
3433, 30deccl 11512 . . . 4  |- ;; 6 1 9  e.  NN0
35 5nn0 11312 . . . . . . 7  |-  5  e.  NN0
3617, 35deccl 11512 . . . . . 6  |- ; 4 5  e.  NN0
3736, 11deccl 11512 . . . . 5  |- ;; 4 5 3  e.  NN0
3829, 28deccl 11512 . . . . . 6  |- ;; 1 6 6  e.  NN0
3913, 10deccl 11512 . . . . . . . 8  |- ; 1 2  e.  NN0
4039, 13deccl 11512 . . . . . . 7  |- ;; 1 2 1  e.  NN0
4111, 13deccl 11512 . . . . . . . . 9  |- ; 3 1  e.  NN0
4213, 17deccl 11512 . . . . . . . . . 10  |- ; 1 4  e.  NN0
4342nn0zi 11402 . . . . . . . . . . . . 13  |- ; 1 4  e.  ZZ
4411nn0zi 11402 . . . . . . . . . . . . 13  |-  3  e.  ZZ
45 gcdcom 15235 . . . . . . . . . . . . 13  |-  ( (; 1
4  e.  ZZ  /\  3  e.  ZZ )  ->  (; 1 4  gcd  3
)  =  ( 3  gcd ; 1 4 ) )
4643, 44, 45mp2an 708 . . . . . . . . . . . 12  |-  (; 1 4  gcd  3
)  =  ( 3  gcd ; 1 4 )
47 3nn 11186 . . . . . . . . . . . . . 14  |-  3  e.  NN
48 4cn 11098 . . . . . . . . . . . . . . . 16  |-  4  e.  CC
49 3cn 11095 . . . . . . . . . . . . . . . 16  |-  3  e.  CC
50 4t3e12 11632 . . . . . . . . . . . . . . . 16  |-  ( 4  x.  3 )  = ; 1
2
5148, 49, 50mulcomli 10047 . . . . . . . . . . . . . . 15  |-  ( 3  x.  4 )  = ; 1
2
52 2p2e4 11144 . . . . . . . . . . . . . . 15  |-  ( 2  +  2 )  =  4
5313, 10, 10, 51, 52decaddi 11579 . . . . . . . . . . . . . 14  |-  ( ( 3  x.  4 )  +  2 )  = ; 1
4
54 2lt3 11195 . . . . . . . . . . . . . 14  |-  2  <  3
5547, 17, 1, 53, 54ndvdsi 15136 . . . . . . . . . . . . 13  |-  -.  3  || ; 1 4
56 3prm 15406 . . . . . . . . . . . . . 14  |-  3  e.  Prime
57 coprm 15423 . . . . . . . . . . . . . 14  |-  ( ( 3  e.  Prime  /\ ; 1 4  e.  ZZ )  ->  ( -.  3  || ; 1 4  <->  ( 3  gcd ; 1 4 )  =  1 ) )
5856, 43, 57mp2an 708 . . . . . . . . . . . . 13  |-  ( -.  3  || ; 1 4  <->  ( 3  gcd ; 1 4 )  =  1 )
5955, 58mpbi 220 . . . . . . . . . . . 12  |-  ( 3  gcd ; 1 4 )  =  1
6046, 59eqtri 2644 . . . . . . . . . . 11  |-  (; 1 4  gcd  3
)  =  1
61 eqid 2622 . . . . . . . . . . . 12  |- ; 1 4  = ; 1 4
6211dec0h 11522 . . . . . . . . . . . 12  |-  3  = ; 0 3
63 2t1e2 11176 . . . . . . . . . . . . . 14  |-  ( 2  x.  1 )  =  2
6463, 24oveq12i 6662 . . . . . . . . . . . . 13  |-  ( ( 2  x.  1 )  +  ( 0  +  1 ) )  =  ( 2  +  1 )
65 2p1e3 11151 . . . . . . . . . . . . 13  |-  ( 2  +  1 )  =  3
6664, 65eqtri 2644 . . . . . . . . . . . 12  |-  ( ( 2  x.  1 )  +  ( 0  +  1 ) )  =  3
67 2cn 11091 . . . . . . . . . . . . . . 15  |-  2  e.  CC
68 4t2e8 11181 . . . . . . . . . . . . . . 15  |-  ( 4  x.  2 )  =  8
6948, 67, 68mulcomli 10047 . . . . . . . . . . . . . 14  |-  ( 2  x.  4 )  =  8
7069oveq1i 6660 . . . . . . . . . . . . 13  |-  ( ( 2  x.  4 )  +  3 )  =  ( 8  +  3 )
71 8p3e11 11612 . . . . . . . . . . . . 13  |-  ( 8  +  3 )  = ; 1
1
7270, 71eqtri 2644 . . . . . . . . . . . 12  |-  ( ( 2  x.  4 )  +  3 )  = ; 1
1
7313, 17, 3, 11, 61, 62, 10, 13, 13, 66, 72decma2c 11568 . . . . . . . . . . 11  |-  ( ( 2  x. ; 1 4 )  +  3 )  = ; 3 1
7410, 11, 42, 60, 73gcdi 15777 . . . . . . . . . 10  |-  (; 3 1  gcd ; 1 4 )  =  1
75 eqid 2622 . . . . . . . . . . 11  |- ; 3 1  = ; 3 1
7649mulid2i 10043 . . . . . . . . . . . . 13  |-  ( 1  x.  3 )  =  3
77 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
7877addid1i 10223 . . . . . . . . . . . . 13  |-  ( 1  +  0 )  =  1
7976, 78oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( 1  x.  3 )  +  ( 1  +  0 ) )  =  ( 3  +  1 )
80 3p1e4 11153 . . . . . . . . . . . 12  |-  ( 3  +  1 )  =  4
8179, 80eqtri 2644 . . . . . . . . . . 11  |-  ( ( 1  x.  3 )  +  ( 1  +  0 ) )  =  4
82 1t1e1 11175 . . . . . . . . . . . . 13  |-  ( 1  x.  1 )  =  1
8382oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( 1  x.  1 )  +  4 )  =  ( 1  +  4 )
84 4p1e5 11154 . . . . . . . . . . . . 13  |-  ( 4  +  1 )  =  5
8548, 77, 84addcomli 10228 . . . . . . . . . . . 12  |-  ( 1  +  4 )  =  5
8635dec0h 11522 . . . . . . . . . . . 12  |-  5  = ; 0 5
8783, 85, 863eqtri 2648 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  +  4 )  = ; 0
5
8811, 13, 13, 17, 75, 61, 13, 35, 3, 81, 87decma2c 11568 . . . . . . . . . 10  |-  ( ( 1  x. ; 3 1 )  + ; 1
4 )  = ; 4 5
8913, 42, 41, 74, 88gcdi 15777 . . . . . . . . 9  |-  (; 4 5  gcd ; 3 1 )  =  1
90 eqid 2622 . . . . . . . . . 10  |- ; 4 5  = ; 4 5
9169, 80oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 2  x.  4 )  +  ( 3  +  1 ) )  =  ( 8  +  4 )
92 8p4e12 11614 . . . . . . . . . . 11  |-  ( 8  +  4 )  = ; 1
2
9391, 92eqtri 2644 . . . . . . . . . 10  |-  ( ( 2  x.  4 )  +  ( 3  +  1 ) )  = ; 1
2
94 5cn 11100 . . . . . . . . . . . 12  |-  5  e.  CC
95 5t2e10 11634 . . . . . . . . . . . 12  |-  ( 5  x.  2 )  = ; 1
0
9694, 67, 95mulcomli 10047 . . . . . . . . . . 11  |-  ( 2  x.  5 )  = ; 1
0
9713, 3, 24, 96decsuc 11535 . . . . . . . . . 10  |-  ( ( 2  x.  5 )  +  1 )  = ; 1
1
9817, 35, 11, 13, 90, 75, 10, 13, 13, 93, 97decma2c 11568 . . . . . . . . 9  |-  ( ( 2  x. ; 4 5 )  + ; 3
1 )  = ;; 1 2 1
9910, 41, 36, 89, 98gcdi 15777 . . . . . . . 8  |-  (;; 1 2 1  gcd ; 4 5 )  =  1
100 eqid 2622 . . . . . . . . 9  |- ;; 1 2 1  = ;; 1 2 1
101 eqid 2622 . . . . . . . . . 10  |- ; 1 2  = ; 1 2
10248addid1i 10223 . . . . . . . . . . 11  |-  ( 4  +  0 )  =  4
10317dec0h 11522 . . . . . . . . . . 11  |-  4  = ; 0 4
104102, 103eqtri 2644 . . . . . . . . . 10  |-  ( 4  +  0 )  = ; 0
4
105 00id 10211 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
10682, 105oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 1  x.  1 )  +  ( 0  +  0 ) )  =  ( 1  +  0 )
107106, 78eqtri 2644 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  +  ( 0  +  0 ) )  =  1
10867mulid2i 10043 . . . . . . . . . . . 12  |-  ( 1  x.  2 )  =  2
109108oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 1  x.  2 )  +  4 )  =  ( 2  +  4 )
110 4p2e6 11162 . . . . . . . . . . . 12  |-  ( 4  +  2 )  =  6
11148, 67, 110addcomli 10228 . . . . . . . . . . 11  |-  ( 2  +  4 )  =  6
11228dec0h 11522 . . . . . . . . . . 11  |-  6  = ; 0 6
113109, 111, 1123eqtri 2648 . . . . . . . . . 10  |-  ( ( 1  x.  2 )  +  4 )  = ; 0
6
11413, 10, 3, 17, 101, 104, 13, 28, 3, 107, 113decma2c 11568 . . . . . . . . 9  |-  ( ( 1  x. ; 1 2 )  +  ( 4  +  0 ) )  = ; 1 6
11582oveq1i 6660 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  +  5 )  =  ( 1  +  5 )
116 5p1e6 11155 . . . . . . . . . . 11  |-  ( 5  +  1 )  =  6
11794, 77, 116addcomli 10228 . . . . . . . . . 10  |-  ( 1  +  5 )  =  6
118115, 117, 1123eqtri 2648 . . . . . . . . 9  |-  ( ( 1  x.  1 )  +  5 )  = ; 0
6
11939, 13, 17, 35, 100, 90, 13, 28, 3, 114, 118decma2c 11568 . . . . . . . 8  |-  ( ( 1  x. ;; 1 2 1 )  + ; 4
5 )  = ;; 1 6 6
12013, 36, 40, 99, 119gcdi 15777 . . . . . . 7  |-  (;; 1 6 6  gcd ;; 1 2 1 )  =  1
121 eqid 2622 . . . . . . . 8  |- ;; 1 6 6  = ;; 1 6 6
122 eqid 2622 . . . . . . . . 9  |- ; 1 6  = ; 1 6
12313, 10, 65, 101decsuc 11535 . . . . . . . . 9  |-  (; 1 2  +  1 )  = ; 1 3
124 1p1e2 11134 . . . . . . . . . . 11  |-  ( 1  +  1 )  =  2
12563, 124oveq12i 6662 . . . . . . . . . 10  |-  ( ( 2  x.  1 )  +  ( 1  +  1 ) )  =  ( 2  +  2 )
126125, 52eqtri 2644 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  ( 1  +  1 ) )  =  4
127 6cn 11102 . . . . . . . . . . 11  |-  6  e.  CC
128 6t2e12 11641 . . . . . . . . . . 11  |-  ( 6  x.  2 )  = ; 1
2
129127, 67, 128mulcomli 10047 . . . . . . . . . 10  |-  ( 2  x.  6 )  = ; 1
2
130 3p2e5 11160 . . . . . . . . . . 11  |-  ( 3  +  2 )  =  5
13149, 67, 130addcomli 10228 . . . . . . . . . 10  |-  ( 2  +  3 )  =  5
13213, 10, 11, 129, 131decaddi 11579 . . . . . . . . 9  |-  ( ( 2  x.  6 )  +  3 )  = ; 1
5
13313, 28, 13, 11, 122, 123, 10, 35, 13, 126, 132decma2c 11568 . . . . . . . 8  |-  ( ( 2  x. ; 1 6 )  +  (; 1 2  +  1 ) )  = ; 4 5
13413, 10, 65, 129decsuc 11535 . . . . . . . 8  |-  ( ( 2  x.  6 )  +  1 )  = ; 1
3
13529, 28, 39, 13, 121, 100, 10, 11, 13, 133, 134decma2c 11568 . . . . . . 7  |-  ( ( 2  x. ;; 1 6 6 )  + ;; 1 2 1 )  = ;; 4 5 3
13610, 40, 38, 120, 135gcdi 15777 . . . . . 6  |-  (;; 4 5 3  gcd ;; 1 6 6 )  =  1
137 eqid 2622 . . . . . . 7  |- ;; 4 5 3  = ;; 4 5 3
13829nn0cni 11304 . . . . . . . . 9  |- ; 1 6  e.  CC
139138addid1i 10223 . . . . . . . 8  |-  (; 1 6  +  0 )  = ; 1 6
14048mulid2i 10043 . . . . . . . . . 10  |-  ( 1  x.  4 )  =  4
141140, 124oveq12i 6662 . . . . . . . . 9  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
142141, 110eqtri 2644 . . . . . . . 8  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  6
14394mulid2i 10043 . . . . . . . . . 10  |-  ( 1  x.  5 )  =  5
144143oveq1i 6660 . . . . . . . . 9  |-  ( ( 1  x.  5 )  +  6 )  =  ( 5  +  6 )
145 6p5e11 11600 . . . . . . . . . 10  |-  ( 6  +  5 )  = ; 1
1
146127, 94, 145addcomli 10228 . . . . . . . . 9  |-  ( 5  +  6 )  = ; 1
1
147144, 146eqtri 2644 . . . . . . . 8  |-  ( ( 1  x.  5 )  +  6 )  = ; 1
1
14817, 35, 13, 28, 90, 139, 13, 13, 13, 142, 147decma2c 11568 . . . . . . 7  |-  ( ( 1  x. ; 4 5 )  +  (; 1 6  +  0 ) )  = ; 6 1
14976oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  3 )  +  6 )  =  ( 3  +  6 )
150 6p3e9 11170 . . . . . . . . 9  |-  ( 6  +  3 )  =  9
151127, 49, 150addcomli 10228 . . . . . . . 8  |-  ( 3  +  6 )  =  9
15230dec0h 11522 . . . . . . . 8  |-  9  = ; 0 9
153149, 151, 1523eqtri 2648 . . . . . . 7  |-  ( ( 1  x.  3 )  +  6 )  = ; 0
9
15436, 11, 29, 28, 137, 121, 13, 30, 3, 148, 153decma2c 11568 . . . . . 6  |-  ( ( 1  x. ;; 4 5 3 )  + ;; 1 6 6 )  = ;; 6 1 9
15513, 38, 37, 136, 154gcdi 15777 . . . . 5  |-  (;; 6 1 9  gcd ;; 4 5 3 )  =  1
156 eqid 2622 . . . . . 6  |- ;; 6 1 9  = ;; 6 1 9
157 7nn0 11314 . . . . . . 7  |-  7  e.  NN0
158 eqid 2622 . . . . . . 7  |- ; 6 1  = ; 6 1
159 5p2e7 11165 . . . . . . . 8  |-  ( 5  +  2 )  =  7
16017, 35, 10, 90, 159decaddi 11579 . . . . . . 7  |-  (; 4 5  +  2 )  = ; 4 7
161102oveq2i 6661 . . . . . . . 8  |-  ( ( 2  x.  6 )  +  ( 4  +  0 ) )  =  ( ( 2  x.  6 )  +  4 )
16213, 10, 17, 129, 111decaddi 11579 . . . . . . . 8  |-  ( ( 2  x.  6 )  +  4 )  = ; 1
6
163161, 162eqtri 2644 . . . . . . 7  |-  ( ( 2  x.  6 )  +  ( 4  +  0 ) )  = ; 1
6
16463oveq1i 6660 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  7 )  =  ( 2  +  7 )
165 7cn 11104 . . . . . . . . 9  |-  7  e.  CC
166 7p2e9 11172 . . . . . . . . 9  |-  ( 7  +  2 )  =  9
167165, 67, 166addcomli 10228 . . . . . . . 8  |-  ( 2  +  7 )  =  9
168164, 167, 1523eqtri 2648 . . . . . . 7  |-  ( ( 2  x.  1 )  +  7 )  = ; 0
9
16928, 13, 17, 157, 158, 160, 10, 30, 3, 163, 168decma2c 11568 . . . . . 6  |-  ( ( 2  x. ; 6 1 )  +  (; 4 5  +  2 ) )  = ;; 1 6 9
170 9cn 11108 . . . . . . . 8  |-  9  e.  CC
171 9t2e18 11663 . . . . . . . 8  |-  ( 9  x.  2 )  = ; 1
8
172170, 67, 171mulcomli 10047 . . . . . . 7  |-  ( 2  x.  9 )  = ; 1
8
17313, 2, 11, 172, 124, 13, 71decaddci 11580 . . . . . 6  |-  ( ( 2  x.  9 )  +  3 )  = ; 2
1
17433, 30, 36, 11, 156, 137, 10, 13, 10, 169, 173decma2c 11568 . . . . 5  |-  ( ( 2  x. ;; 6 1 9 )  + ;; 4 5 3 )  = ;;; 1 6 9 1
17510, 37, 34, 155, 174gcdi 15777 . . . 4  |-  (;;; 1 6 9 1  gcd ;; 6 1 9 )  =  1
176 eqid 2622 . . . . 5  |- ;;; 1 6 9 1  = ;;; 1 6 9 1
177 eqid 2622 . . . . . 6  |- ;; 1 6 9  = ;; 1 6 9
17828, 13, 124, 158decsuc 11535 . . . . . 6  |-  (; 6 1  +  1 )  = ; 6 2
179 6p1e7 11156 . . . . . . . 8  |-  ( 6  +  1 )  =  7
180157dec0h 11522 . . . . . . . 8  |-  7  = ; 0 7
181179, 180eqtri 2644 . . . . . . 7  |-  ( 6  +  1 )  = ; 0
7
18282, 24oveq12i 6662 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  ( 0  +  1 ) )  =  ( 1  +  1 )
183182, 124eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  1 )  +  ( 0  +  1 ) )  =  2
184127mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  6 )  =  6
185184oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  6 )  +  7 )  =  ( 6  +  7 )
186 7p6e13 11608 . . . . . . . . 9  |-  ( 7  +  6 )  = ; 1
3
187165, 127, 186addcomli 10228 . . . . . . . 8  |-  ( 6  +  7 )  = ; 1
3
188185, 187eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  6 )  +  7 )  = ; 1
3
18913, 28, 3, 157, 122, 181, 13, 11, 13, 183, 188decma2c 11568 . . . . . 6  |-  ( ( 1  x. ; 1 6 )  +  ( 6  +  1 ) )  = ; 2 3
190170mulid2i 10043 . . . . . . . 8  |-  ( 1  x.  9 )  =  9
191190oveq1i 6660 . . . . . . 7  |-  ( ( 1  x.  9 )  +  2 )  =  ( 9  +  2 )
192 9p2e11 11619 . . . . . . 7  |-  ( 9  +  2 )  = ; 1
1
193191, 192eqtri 2644 . . . . . 6  |-  ( ( 1  x.  9 )  +  2 )  = ; 1
1
19429, 30, 28, 10, 177, 178, 13, 13, 13, 189, 193decma2c 11568 . . . . 5  |-  ( ( 1  x. ;; 1 6 9 )  +  (; 6 1  +  1 ) )  = ;; 2 3 1
19582oveq1i 6660 . . . . . 6  |-  ( ( 1  x.  1 )  +  9 )  =  ( 1  +  9 )
196 9p1e10 11496 . . . . . . 7  |-  ( 9  +  1 )  = ; 1
0
197170, 77, 196addcomli 10228 . . . . . 6  |-  ( 1  +  9 )  = ; 1
0
198195, 197eqtri 2644 . . . . 5  |-  ( ( 1  x.  1 )  +  9 )  = ; 1
0
19931, 13, 33, 30, 176, 156, 13, 3, 13, 194, 198decma2c 11568 . . . 4  |-  ( ( 1  x. ;;; 1 6 9 1 )  + ;; 6 1 9 )  = ;;; 2 3 1 0
20013, 34, 32, 175, 199gcdi 15777 . . 3  |-  (;;; 2 3 1 0  gcd ;;; 1 6 9 1 )  =  1
201 eqid 2622 . . . . . 6  |- ;; 2 3 1  = ;; 2 3 1
20231nn0cni 11304 . . . . . . 7  |- ;; 1 6 9  e.  CC
203202addid1i 10223 . . . . . 6  |-  (;; 1 6 9  +  0 )  = ;; 1 6 9
204 eqid 2622 . . . . . . 7  |- ; 2 3  = ; 2 3
20513, 28, 179, 122decsuc 11535 . . . . . . 7  |-  (; 1 6  +  1 )  = ; 1 7
206108, 124oveq12i 6662 . . . . . . . 8  |-  ( ( 1  x.  2 )  +  ( 1  +  1 ) )  =  ( 2  +  2 )
207206, 52eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  2 )  +  ( 1  +  1 ) )  =  4
20876oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  3 )  +  7 )  =  ( 3  +  7 )
209 7p3e10 11603 . . . . . . . . 9  |-  ( 7  +  3 )  = ; 1
0
210165, 49, 209addcomli 10228 . . . . . . . 8  |-  ( 3  +  7 )  = ; 1
0
211208, 210eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  3 )  +  7 )  = ; 1
0
21210, 11, 13, 157, 204, 205, 13, 3, 13, 207, 211decma2c 11568 . . . . . 6  |-  ( ( 1  x. ; 2 3 )  +  (; 1 6  +  1 ) )  = ; 4 0
21312, 13, 29, 30, 201, 203, 13, 3, 13, 212, 198decma2c 11568 . . . . 5  |-  ( ( 1  x. ;; 2 3 1 )  +  (;; 1 6 9  +  0 ) )  = ;; 4 0 0
21477mul01i 10226 . . . . . . 7  |-  ( 1  x.  0 )  =  0
215214oveq1i 6660 . . . . . 6  |-  ( ( 1  x.  0 )  +  1 )  =  ( 0  +  1 )
21613dec0h 11522 . . . . . 6  |-  1  = ; 0 1
217215, 24, 2163eqtri 2648 . . . . 5  |-  ( ( 1  x.  0 )  +  1 )  = ; 0
1
21814, 3, 31, 13, 25, 176, 13, 13, 3, 213, 217decma2c 11568 . . . 4  |-  ( ( 1  x. ;;; 2 3 1 0 )  + ;;; 1 6 9 1 )  = ;;; 4 0 0 1
219218, 16eqtr4i 2647 . . 3  |-  ( ( 1  x. ;;; 2 3 1 0 )  + ;;; 1 6 9 1 )  =  N
22013, 32, 15, 200, 219gcdi 15777 . 2  |-  ( N  gcd ;;; 2 3 1 0 )  =  1
2219, 15, 22, 27, 220gcdmodi 15778 1  |-  ( ( ( 2 ^;; 8 0 0 )  - 
1 )  gcd  N
)  =  1
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   8c8 11076   9c9 11077   NN0cn0 11292   ZZcz 11377  ;cdc 11493   ^cexp 12860    || cdvds 14983    gcd cgcd 15216   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  4001prm  15852
  Copyright terms: Public domain W3C validator