MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4001lem1 Structured version   Visualization version   Unicode version

Theorem 4001lem1 15848
Description: Lemma for 4001prm 15852. Calculate a power mod. In decimal, we calculate  2 ^ 1 2  =  4 0 9 6  =  N  +  9 5,  2 ^ 2 4  =  ( 2 ^ 1 2 ) ^ 2  ==  9
5 ^ 2  =  2 N  +  1 0 2 3,  2 ^ 2 5  =  2 ^ 2 4  x.  2  ==  1 0 2 3  x.  2  =  2 0 4 6,  2 ^ 5 0  =  ( 2 ^ 2 5 ) ^ 2  ==  2
0 4 6 ^ 2  =  1 0 4 6 N  + 
1 0 7 0,  2 ^ 1 0 0  =  ( 2 ^ 5 0 ) ^ 2  ==  1 0 7 0 ^ 2  =  2 8 6 N  + 
6 1 4 and  2 ^ 2 0 0  =  ( 2 ^ 1 0 0 ) ^ 2  ==  6 1 4 ^ 2  =  9 4 N  +  9 0 2  ==  9 0 2. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
4001prm.1  |-  N  = ;;; 4 0 0 1
Assertion
Ref Expression
4001lem1  |-  ( ( 2 ^;; 2 0 0 )  mod 
N )  =  (;; 9 0 2  mod 
N )

Proof of Theorem 4001lem1
StepHypRef Expression
1 4001prm.1 . . 3  |-  N  = ;;; 4 0 0 1
2 4nn0 11311 . . . . . 6  |-  4  e.  NN0
3 0nn0 11307 . . . . . 6  |-  0  e.  NN0
42, 3deccl 11512 . . . . 5  |- ; 4 0  e.  NN0
54, 3deccl 11512 . . . 4  |- ;; 4 0 0  e.  NN0
6 1nn 11031 . . . 4  |-  1  e.  NN
75, 6decnncl 11518 . . 3  |- ;;; 4 0 0 1  e.  NN
81, 7eqeltri 2697 . 2  |-  N  e.  NN
9 2nn 11185 . 2  |-  2  e.  NN
10 10nn0 11516 . . 3  |- ; 1 0  e.  NN0
1110, 3deccl 11512 . 2  |- ;; 1 0 0  e.  NN0
12 9nn0 11316 . . . 4  |-  9  e.  NN0
1312, 2deccl 11512 . . 3  |- ; 9 4  e.  NN0
1413nn0zi 11402 . 2  |- ; 9 4  e.  ZZ
15 6nn0 11313 . . . 4  |-  6  e.  NN0
16 1nn0 11308 . . . 4  |-  1  e.  NN0
1715, 16deccl 11512 . . 3  |- ; 6 1  e.  NN0
1817, 2deccl 11512 . 2  |- ;; 6 1 4  e.  NN0
1912, 3deccl 11512 . . 3  |- ; 9 0  e.  NN0
20 2nn0 11309 . . 3  |-  2  e.  NN0
2119, 20deccl 11512 . 2  |- ;; 9 0 2  e.  NN0
22 5nn0 11312 . . . 4  |-  5  e.  NN0
2322, 3deccl 11512 . . 3  |- ; 5 0  e.  NN0
24 8nn0 11315 . . . . . 6  |-  8  e.  NN0
2520, 24deccl 11512 . . . . 5  |- ; 2 8  e.  NN0
2625, 15deccl 11512 . . . 4  |- ;; 2 8 6  e.  NN0
2726nn0zi 11402 . . 3  |- ;; 2 8 6  e.  ZZ
28 7nn0 11314 . . . . 5  |-  7  e.  NN0
2910, 28deccl 11512 . . . 4  |- ;; 1 0 7  e.  NN0
3029, 3deccl 11512 . . 3  |- ;;; 1 0 7 0  e.  NN0
3120, 22deccl 11512 . . . 4  |- ; 2 5  e.  NN0
3210, 2deccl 11512 . . . . . 6  |- ;; 1 0 4  e.  NN0
3332, 15deccl 11512 . . . . 5  |- ;;; 1 0 4 6  e.  NN0
3433nn0zi 11402 . . . 4  |- ;;; 1 0 4 6  e.  ZZ
3520, 3deccl 11512 . . . . . 6  |- ; 2 0  e.  NN0
3635, 2deccl 11512 . . . . 5  |- ;; 2 0 4  e.  NN0
3736, 15deccl 11512 . . . 4  |- ;;; 2 0 4 6  e.  NN0
3820, 2deccl 11512 . . . . 5  |- ; 2 4  e.  NN0
39 0z 11388 . . . . 5  |-  0  e.  ZZ
4010, 20deccl 11512 . . . . . 6  |- ;; 1 0 2  e.  NN0
41 3nn0 11310 . . . . . 6  |-  3  e.  NN0
4240, 41deccl 11512 . . . . 5  |- ;;; 1 0 2 3  e.  NN0
4316, 20deccl 11512 . . . . . 6  |- ; 1 2  e.  NN0
44 2z 11409 . . . . . 6  |-  2  e.  ZZ
4512, 22deccl 11512 . . . . . 6  |- ; 9 5  e.  NN0
46 1z 11407 . . . . . . 7  |-  1  e.  ZZ
4715, 2deccl 11512 . . . . . . 7  |- ; 6 4  e.  NN0
48 2exp6 15795 . . . . . . . 8  |-  ( 2 ^ 6 )  = ; 6
4
4948oveq1i 6660 . . . . . . 7  |-  ( ( 2 ^ 6 )  mod  N )  =  (; 6 4  mod  N
)
50 6cn 11102 . . . . . . . 8  |-  6  e.  CC
51 2cn 11091 . . . . . . . 8  |-  2  e.  CC
52 6t2e12 11641 . . . . . . . 8  |-  ( 6  x.  2 )  = ; 1
2
5350, 51, 52mulcomli 10047 . . . . . . 7  |-  ( 2  x.  6 )  = ; 1
2
54 eqid 2622 . . . . . . . . 9  |- ; 9 5  = ; 9 5
55 eqid 2622 . . . . . . . . . 10  |- ;; 4 0 0  = ;; 4 0 0
56 9cn 11108 . . . . . . . . . . . 12  |-  9  e.  CC
5756addid1i 10223 . . . . . . . . . . 11  |-  ( 9  +  0 )  =  9
5812dec0h 11522 . . . . . . . . . . 11  |-  9  = ; 0 9
5957, 58eqtri 2644 . . . . . . . . . 10  |-  ( 9  +  0 )  = ; 0
9
60 eqid 2622 . . . . . . . . . . 11  |- ; 4 0  = ; 4 0
61 00id 10211 . . . . . . . . . . . 12  |-  ( 0  +  0 )  =  0
623dec0h 11522 . . . . . . . . . . . 12  |-  0  = ; 0 0
6361, 62eqtri 2644 . . . . . . . . . . 11  |-  ( 0  +  0 )  = ; 0
0
64 4cn 11098 . . . . . . . . . . . . . 14  |-  4  e.  CC
6564mulid2i 10043 . . . . . . . . . . . . 13  |-  ( 1  x.  4 )  =  4
6665, 61oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( 1  x.  4 )  +  ( 0  +  0 ) )  =  ( 4  +  0 )
6764addid1i 10223 . . . . . . . . . . . 12  |-  ( 4  +  0 )  =  4
6866, 67eqtri 2644 . . . . . . . . . . 11  |-  ( ( 1  x.  4 )  +  ( 0  +  0 ) )  =  4
69 ax-1cn 9994 . . . . . . . . . . . . . 14  |-  1  e.  CC
7069mul01i 10226 . . . . . . . . . . . . 13  |-  ( 1  x.  0 )  =  0
7170oveq1i 6660 . . . . . . . . . . . 12  |-  ( ( 1  x.  0 )  +  0 )  =  ( 0  +  0 )
7271, 61, 623eqtri 2648 . . . . . . . . . . 11  |-  ( ( 1  x.  0 )  +  0 )  = ; 0
0
732, 3, 3, 3, 60, 63, 16, 3, 3, 68, 72decma2c 11568 . . . . . . . . . 10  |-  ( ( 1  x. ; 4 0 )  +  ( 0  +  0 ) )  = ; 4 0
7470oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 1  x.  0 )  +  9 )  =  ( 0  +  9 )
7556addid2i 10224 . . . . . . . . . . 11  |-  ( 0  +  9 )  =  9
7674, 75, 583eqtri 2648 . . . . . . . . . 10  |-  ( ( 1  x.  0 )  +  9 )  = ; 0
9
774, 3, 3, 12, 55, 59, 16, 12, 3, 73, 76decma2c 11568 . . . . . . . . 9  |-  ( ( 1  x. ;; 4 0 0 )  +  ( 9  +  0 ) )  = ;; 4 0 9
7869mulid1i 10042 . . . . . . . . . . 11  |-  ( 1  x.  1 )  =  1
7978oveq1i 6660 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  +  5 )  =  ( 1  +  5 )
80 5cn 11100 . . . . . . . . . . 11  |-  5  e.  CC
81 5p1e6 11155 . . . . . . . . . . 11  |-  ( 5  +  1 )  =  6
8280, 69, 81addcomli 10228 . . . . . . . . . 10  |-  ( 1  +  5 )  =  6
8315dec0h 11522 . . . . . . . . . 10  |-  6  = ; 0 6
8479, 82, 833eqtri 2648 . . . . . . . . 9  |-  ( ( 1  x.  1 )  +  5 )  = ; 0
6
855, 16, 12, 22, 1, 54, 16, 15, 3, 77, 84decma2c 11568 . . . . . . . 8  |-  ( ( 1  x.  N )  + ; 9 5 )  = ;;; 4 0 9 6
86 eqid 2622 . . . . . . . . 9  |- ; 6 4  = ; 6 4
87 eqid 2622 . . . . . . . . . 10  |- ; 2 5  = ; 2 5
88 2p2e4 11144 . . . . . . . . . . . 12  |-  ( 2  +  2 )  =  4
8988oveq2i 6661 . . . . . . . . . . 11  |-  ( ( 6  x.  6 )  +  ( 2  +  2 ) )  =  ( ( 6  x.  6 )  +  4 )
90 6t6e36 11646 . . . . . . . . . . . 12  |-  ( 6  x.  6 )  = ; 3
6
91 3p1e4 11153 . . . . . . . . . . . 12  |-  ( 3  +  1 )  =  4
92 6p4e10 11598 . . . . . . . . . . . 12  |-  ( 6  +  4 )  = ; 1
0
9341, 15, 2, 90, 91, 92decaddci2 11581 . . . . . . . . . . 11  |-  ( ( 6  x.  6 )  +  4 )  = ; 4
0
9489, 93eqtri 2644 . . . . . . . . . 10  |-  ( ( 6  x.  6 )  +  ( 2  +  2 ) )  = ; 4
0
95 6t4e24 11643 . . . . . . . . . . . 12  |-  ( 6  x.  4 )  = ; 2
4
9650, 64, 95mulcomli 10047 . . . . . . . . . . 11  |-  ( 4  x.  6 )  = ; 2
4
97 5p4e9 11167 . . . . . . . . . . . 12  |-  ( 5  +  4 )  =  9
9880, 64, 97addcomli 10228 . . . . . . . . . . 11  |-  ( 4  +  5 )  =  9
9920, 2, 22, 96, 98decaddi 11579 . . . . . . . . . 10  |-  ( ( 4  x.  6 )  +  5 )  = ; 2
9
10015, 2, 20, 22, 86, 87, 15, 12, 20, 94, 99decmac 11566 . . . . . . . . 9  |-  ( (; 6
4  x.  6 )  + ; 2 5 )  = ;; 4 0 9
101 4p1e5 11154 . . . . . . . . . . 11  |-  ( 4  +  1 )  =  5
10220, 2, 101, 95decsuc 11535 . . . . . . . . . 10  |-  ( ( 6  x.  4 )  +  1 )  = ; 2
5
103 4t4e16 11633 . . . . . . . . . 10  |-  ( 4  x.  4 )  = ; 1
6
1042, 15, 2, 86, 15, 16, 102, 103decmul1c 11587 . . . . . . . . 9  |-  (; 6 4  x.  4 )  = ;; 2 5 6
10547, 15, 2, 86, 15, 31, 100, 104decmul2c 11589 . . . . . . . 8  |-  (; 6 4  x. ; 6 4 )  = ;;; 4 0 9 6
10685, 105eqtr4i 2647 . . . . . . 7  |-  ( ( 1  x.  N )  + ; 9 5 )  =  (; 6 4  x. ; 6 4 )
1078, 9, 15, 46, 47, 45, 49, 53, 106mod2xi 15773 . . . . . 6  |-  ( ( 2 ^; 1 2 )  mod 
N )  =  (; 9
5  mod  N )
108 eqid 2622 . . . . . . 7  |- ; 1 2  = ; 1 2
10951mulid1i 10042 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
110109oveq1i 6660 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  0 )  =  ( 2  +  0 )
11151addid1i 10223 . . . . . . . 8  |-  ( 2  +  0 )  =  2
112110, 111eqtri 2644 . . . . . . 7  |-  ( ( 2  x.  1 )  +  0 )  =  2
113 2t2e4 11177 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
1142dec0h 11522 . . . . . . . 8  |-  4  = ; 0 4
115113, 114eqtri 2644 . . . . . . 7  |-  ( 2  x.  2 )  = ; 0
4
11620, 16, 20, 108, 2, 3, 112, 115decmul2c 11589 . . . . . 6  |-  ( 2  x. ; 1 2 )  = ; 2
4
117 eqid 2622 . . . . . . . 8  |- ;;; 1 0 2 3  = ;;; 1 0 2 3
11840nn0cni 11304 . . . . . . . . . 10  |- ;; 1 0 2  e.  CC
119118addid1i 10223 . . . . . . . . 9  |-  (;; 1 0 2  +  0 )  = ;; 1 0 2
120 dec10p 11553 . . . . . . . . . 10  |-  (; 1 0  +  0 )  = ; 1 0
121 4t2e8 11181 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
12264, 51, 121mulcomli 10047 . . . . . . . . . . . 12  |-  ( 2  x.  4 )  =  8
12369addid1i 10223 . . . . . . . . . . . 12  |-  ( 1  +  0 )  =  1
124122, 123oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 2  x.  4 )  +  ( 1  +  0 ) )  =  ( 8  +  1 )
125 8p1e9 11158 . . . . . . . . . . 11  |-  ( 8  +  1 )  =  9
126124, 125eqtri 2644 . . . . . . . . . 10  |-  ( ( 2  x.  4 )  +  ( 1  +  0 ) )  =  9
12751mul01i 10226 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
128127oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 2  x.  0 )  +  0 )  =  ( 0  +  0 )
129128, 61, 623eqtri 2648 . . . . . . . . . 10  |-  ( ( 2  x.  0 )  +  0 )  = ; 0
0
1302, 3, 16, 3, 60, 120, 20, 3, 3, 126, 129decma2c 11568 . . . . . . . . 9  |-  ( ( 2  x. ; 4 0 )  +  (; 1 0  +  0 ) )  = ; 9 0
131127oveq1i 6660 . . . . . . . . . 10  |-  ( ( 2  x.  0 )  +  2 )  =  ( 0  +  2 )
13251addid2i 10224 . . . . . . . . . 10  |-  ( 0  +  2 )  =  2
13320dec0h 11522 . . . . . . . . . 10  |-  2  = ; 0 2
134131, 132, 1333eqtri 2648 . . . . . . . . 9  |-  ( ( 2  x.  0 )  +  2 )  = ; 0
2
1354, 3, 10, 20, 55, 119, 20, 20, 3, 130, 134decma2c 11568 . . . . . . . 8  |-  ( ( 2  x. ;; 4 0 0 )  +  (;; 1 0 2  +  0 ) )  = ;; 9 0 2
136109oveq1i 6660 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  3 )  =  ( 2  +  3 )
137 3cn 11095 . . . . . . . . . 10  |-  3  e.  CC
138 3p2e5 11160 . . . . . . . . . 10  |-  ( 3  +  2 )  =  5
139137, 51, 138addcomli 10228 . . . . . . . . 9  |-  ( 2  +  3 )  =  5
14022dec0h 11522 . . . . . . . . 9  |-  5  = ; 0 5
141136, 139, 1403eqtri 2648 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  3 )  = ; 0
5
1425, 16, 40, 41, 1, 117, 20, 22, 3, 135, 141decma2c 11568 . . . . . . 7  |-  ( ( 2  x.  N )  + ;;; 1 0 2 3 )  = ;;; 9 0 2 5
1432, 28deccl 11512 . . . . . . . 8  |- ; 4 7  e.  NN0
144 eqid 2622 . . . . . . . . 9  |- ; 4 7  = ; 4 7
14598oveq2i 6661 . . . . . . . . . 10  |-  ( ( 9  x.  9 )  +  ( 4  +  5 ) )  =  ( ( 9  x.  9 )  +  9 )
146 9t9e81 11670 . . . . . . . . . . 11  |-  ( 9  x.  9 )  = ; 8
1
147 9p1e10 11496 . . . . . . . . . . . 12  |-  ( 9  +  1 )  = ; 1
0
14856, 69, 147addcomli 10228 . . . . . . . . . . 11  |-  ( 1  +  9 )  = ; 1
0
14924, 16, 12, 146, 125, 148decaddci2 11581 . . . . . . . . . 10  |-  ( ( 9  x.  9 )  +  9 )  = ; 9
0
150145, 149eqtri 2644 . . . . . . . . 9  |-  ( ( 9  x.  9 )  +  ( 4  +  5 ) )  = ; 9
0
151 9t5e45 11666 . . . . . . . . . . 11  |-  ( 9  x.  5 )  = ; 4
5
15256, 80, 151mulcomli 10047 . . . . . . . . . 10  |-  ( 5  x.  9 )  = ; 4
5
153 7cn 11104 . . . . . . . . . . 11  |-  7  e.  CC
154 7p5e12 11607 . . . . . . . . . . 11  |-  ( 7  +  5 )  = ; 1
2
155153, 80, 154addcomli 10228 . . . . . . . . . 10  |-  ( 5  +  7 )  = ; 1
2
1562, 22, 28, 152, 101, 20, 155decaddci 11580 . . . . . . . . 9  |-  ( ( 5  x.  9 )  +  7 )  = ; 5
2
15712, 22, 2, 28, 54, 144, 12, 20, 22, 150, 156decmac 11566 . . . . . . . 8  |-  ( (; 9
5  x.  9 )  + ; 4 7 )  = ;; 9 0 2
158 5p2e7 11165 . . . . . . . . . 10  |-  ( 5  +  2 )  =  7
1592, 22, 20, 151, 158decaddi 11579 . . . . . . . . 9  |-  ( ( 9  x.  5 )  +  2 )  = ; 4
7
160 5t5e25 11639 . . . . . . . . 9  |-  ( 5  x.  5 )  = ; 2
5
16122, 12, 22, 54, 22, 20, 159, 160decmul1c 11587 . . . . . . . 8  |-  (; 9 5  x.  5 )  = ;; 4 7 5
16245, 12, 22, 54, 22, 143, 157, 161decmul2c 11589 . . . . . . 7  |-  (; 9 5  x. ; 9 5 )  = ;;; 9 0 2 5
163142, 162eqtr4i 2647 . . . . . 6  |-  ( ( 2  x.  N )  + ;;; 1 0 2 3 )  =  (; 9 5  x. ; 9 5 )
1648, 9, 43, 44, 45, 42, 107, 116, 163mod2xi 15773 . . . . 5  |-  ( ( 2 ^; 2 4 )  mod 
N )  =  (;;; 1 0 2 3  mod 
N )
165 eqid 2622 . . . . . 6  |- ; 2 4  = ; 2 4
16620, 2, 101, 165decsuc 11535 . . . . 5  |-  (; 2 4  +  1 )  = ; 2 5
16737nn0cni 11304 . . . . . . 7  |- ;;; 2 0 4 6  e.  CC
168167addid2i 10224 . . . . . 6  |-  ( 0  + ;;; 2 0 4 6 )  = ;;; 2 0 4 6
1698nncni 11030 . . . . . . . 8  |-  N  e.  CC
170169mul02i 10225 . . . . . . 7  |-  ( 0  x.  N )  =  0
171170oveq1i 6660 . . . . . 6  |-  ( ( 0  x.  N )  + ;;; 2 0 4 6 )  =  ( 0  + ;;; 2 0 4 6 )
172 eqid 2622 . . . . . . . 8  |- ;; 1 0 2  = ;; 1 0 2
17320dec0u 11520 . . . . . . . 8  |-  (; 1 0  x.  2 )  = ; 2 0
17420, 10, 20, 172, 2, 173, 113decmul1 11585 . . . . . . 7  |-  (;; 1 0 2  x.  2 )  = ;; 2 0 4
175 3t2e6 11179 . . . . . . 7  |-  ( 3  x.  2 )  =  6
17620, 40, 41, 117, 15, 174, 175decmul1 11585 . . . . . 6  |-  (;;; 1 0 2 3  x.  2 )  = ;;; 2 0 4 6
177168, 171, 1763eqtr4i 2654 . . . . 5  |-  ( ( 0  x.  N )  + ;;; 2 0 4 6 )  =  (;;; 1 0 2 3  x.  2 )
1788, 9, 38, 39, 42, 37, 164, 166, 177modxp1i 15774 . . . 4  |-  ( ( 2 ^; 2 5 )  mod 
N )  =  (;;; 2 0 4 6  mod 
N )
179113oveq1i 6660 . . . . . 6  |-  ( ( 2  x.  2 )  +  1 )  =  ( 4  +  1 )
180179, 101eqtri 2644 . . . . 5  |-  ( ( 2  x.  2 )  +  1 )  =  5
181 5t2e10 11634 . . . . . 6  |-  ( 5  x.  2 )  = ; 1
0
18280, 51, 181mulcomli 10047 . . . . 5  |-  ( 2  x.  5 )  = ; 1
0
18320, 20, 22, 87, 3, 16, 180, 182decmul2c 11589 . . . 4  |-  ( 2  x. ; 2 5 )  = ; 5
0
184 eqid 2622 . . . . . 6  |- ;;; 1 0 7 0  = ;;; 1 0 7 0
18520, 16deccl 11512 . . . . . . 7  |- ; 2 1  e.  NN0
186 eqid 2622 . . . . . . . 8  |- ;; 1 0 7  = ;; 1 0 7
187 eqid 2622 . . . . . . . 8  |- ;; 1 0 4  = ;; 1 0 4
188 0p1e1 11132 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
189 10p10e20 11628 . . . . . . . . 9  |-  (; 1 0  + ; 1 0 )  = ; 2
0
19020, 3, 188, 189decsuc 11535 . . . . . . . 8  |-  ( (; 1
0  + ; 1 0 )  +  1 )  = ; 2 1
191 7p4e11 11605 . . . . . . . 8  |-  ( 7  +  4 )  = ; 1
1
19210, 28, 10, 2, 186, 187, 190, 16, 191decaddc 11572 . . . . . . 7  |-  (;; 1 0 7  + ;; 1 0 4 )  = ;; 2 1 1
193185nn0cni 11304 . . . . . . . . 9  |- ; 2 1  e.  CC
194193addid1i 10223 . . . . . . . 8  |-  (; 2 1  +  0 )  = ; 2 1
195111, 20eqeltri 2697 . . . . . . . . 9  |-  ( 2  +  0 )  e. 
NN0
196 eqid 2622 . . . . . . . . 9  |- ;;; 1 0 4 6  = ;;; 1 0 4 6
197 dfdec10 11497 . . . . . . . . . . 11  |- ; 4 1  =  ( (; 1 0  x.  4 )  +  1 )
198197eqcomi 2631 . . . . . . . . . 10  |-  ( (; 1
0  x.  4 )  +  1 )  = ; 4
1
199 6p2e8 11169 . . . . . . . . . . 11  |-  ( 6  +  2 )  =  8
20016, 15, 20, 103, 199decaddi 11579 . . . . . . . . . 10  |-  ( ( 4  x.  4 )  +  2 )  = ; 1
8
20110, 2, 20, 187, 2, 24, 16, 198, 200decrmac 11577 . . . . . . . . 9  |-  ( (;; 1 0 4  x.  4 )  +  2 )  = ;; 4 1 8
20295, 111oveq12i 6662 . . . . . . . . . 10  |-  ( ( 6  x.  4 )  +  ( 2  +  0 ) )  =  (; 2 4  +  2 )
203 4p2e6 11162 . . . . . . . . . . 11  |-  ( 4  +  2 )  =  6
20420, 2, 20, 165, 203decaddi 11579 . . . . . . . . . 10  |-  (; 2 4  +  2 )  = ; 2 6
205202, 204eqtri 2644 . . . . . . . . 9  |-  ( ( 6  x.  4 )  +  ( 2  +  0 ) )  = ; 2
6
20632, 15, 195, 196, 2, 15, 20, 201, 205decrmac 11577 . . . . . . . 8  |-  ( (;;; 1 0 4 6  x.  4 )  +  ( 2  +  0 ) )  = ;;; 4 1 8 6
20733nn0cni 11304 . . . . . . . . . . 11  |- ;;; 1 0 4 6  e.  CC
208207mul01i 10226 . . . . . . . . . 10  |-  (;;; 1 0 4 6  x.  0 )  =  0
209208oveq1i 6660 . . . . . . . . 9  |-  ( (;;; 1 0 4 6  x.  0 )  +  1 )  =  ( 0  +  1 )
21016dec0h 11522 . . . . . . . . 9  |-  1  = ; 0 1
211209, 188, 2103eqtri 2648 . . . . . . . 8  |-  ( (;;; 1 0 4 6  x.  0 )  +  1 )  = ; 0 1
2122, 3, 20, 16, 60, 194, 33, 16, 3, 206, 211decma2c 11568 . . . . . . 7  |-  ( (;;; 1 0 4 6  x. ; 4
0 )  +  (; 2
1  +  0 ) )  = ;;;; 4 1 8 6 1
2134, 3, 185, 16, 55, 192, 33, 16, 3, 212, 211decma2c 11568 . . . . . 6  |-  ( (;;; 1 0 4 6  x. ;; 4 0 0 )  +  (;; 1 0 7  + ;; 1 0 4 ) )  = ;;;;; 4 1 8 6 1 1
214207mulid1i 10042 . . . . . . . 8  |-  (;;; 1 0 4 6  x.  1 )  = ;;; 1 0 4 6
215214oveq1i 6660 . . . . . . 7  |-  ( (;;; 1 0 4 6  x.  1 )  +  0 )  =  (;;; 1 0 4 6  +  0 )
216207addid1i 10223 . . . . . . 7  |-  (;;; 1 0 4 6  +  0 )  = ;;; 1 0 4 6
217215, 216eqtri 2644 . . . . . 6  |-  ( (;;; 1 0 4 6  x.  1 )  +  0 )  = ;;; 1 0 4 6
2185, 16, 29, 3, 1, 184, 33, 15, 32, 213, 217decma2c 11568 . . . . 5  |-  ( (;;; 1 0 4 6  x.  N )  + ;;; 1 0 7 0 )  = ;;;;;; 4 1 8 6 1 1 6
219 eqid 2622 . . . . . 6  |- ;;; 2 0 4 6  = ;;; 2 0 4 6
22043, 20deccl 11512 . . . . . . 7  |- ;; 1 2 2  e.  NN0
221220, 28deccl 11512 . . . . . 6  |- ;;; 1 2 2 7  e.  NN0
222 eqid 2622 . . . . . . 7  |- ;; 2 0 4  = ;; 2 0 4
223 eqid 2622 . . . . . . 7  |- ;;; 1 2 2 7  = ;;; 1 2 2 7
22424, 16deccl 11512 . . . . . . . 8  |- ; 8 1  e.  NN0
225224, 12deccl 11512 . . . . . . 7  |- ;; 8 1 9  e.  NN0
226 eqid 2622 . . . . . . . 8  |- ; 2 0  = ; 2 0
227 eqid 2622 . . . . . . . . 9  |- ;; 1 2 2  = ;; 1 2 2
228 eqid 2622 . . . . . . . . 9  |- ;; 8 1 9  = ;; 8 1 9
229 eqid 2622 . . . . . . . . . . 11  |- ; 8 1  = ; 8 1
230 8cn 11106 . . . . . . . . . . . 12  |-  8  e.  CC
231230, 69, 125addcomli 10228 . . . . . . . . . . 11  |-  ( 1  +  8 )  =  9
232 2p1e3 11151 . . . . . . . . . . 11  |-  ( 2  +  1 )  =  3
23316, 20, 24, 16, 108, 229, 231, 232decadd 11570 . . . . . . . . . 10  |-  (; 1 2  + ; 8 1 )  = ; 9
3
23412, 41, 91, 233decsuc 11535 . . . . . . . . 9  |-  ( (; 1
2  + ; 8 1 )  +  1 )  = ; 9 4
235 9p2e11 11619 . . . . . . . . . 10  |-  ( 9  +  2 )  = ; 1
1
23656, 51, 235addcomli 10228 . . . . . . . . 9  |-  ( 2  +  9 )  = ; 1
1
23743, 20, 224, 12, 227, 228, 234, 16, 236decaddc 11572 . . . . . . . 8  |-  (;; 1 2 2  + ;; 8 1 9 )  = ;; 9 4 1
23813nn0cni 11304 . . . . . . . . . 10  |- ; 9 4  e.  CC
239238addid1i 10223 . . . . . . . . 9  |-  (; 9 4  +  0 )  = ; 9 4
240123, 16eqeltri 2697 . . . . . . . . . . 11  |-  ( 1  +  0 )  e. 
NN0
24151mul02i 10225 . . . . . . . . . . . . 13  |-  ( 0  x.  2 )  =  0
242241, 123oveq12i 6662 . . . . . . . . . . . 12  |-  ( ( 0  x.  2 )  +  ( 1  +  0 ) )  =  ( 0  +  1 )
243242, 188eqtri 2644 . . . . . . . . . . 11  |-  ( ( 0  x.  2 )  +  ( 1  +  0 ) )  =  1
24420, 3, 240, 226, 20, 113, 243decrmanc 11576 . . . . . . . . . 10  |-  ( (; 2
0  x.  2 )  +  ( 1  +  0 ) )  = ; 4
1
245121oveq1i 6660 . . . . . . . . . . 11  |-  ( ( 4  x.  2 )  +  0 )  =  ( 8  +  0 )
246230addid1i 10223 . . . . . . . . . . 11  |-  ( 8  +  0 )  =  8
24724dec0h 11522 . . . . . . . . . . 11  |-  8  = ; 0 8
248245, 246, 2473eqtri 2648 . . . . . . . . . 10  |-  ( ( 4  x.  2 )  +  0 )  = ; 0
8
24935, 2, 16, 3, 222, 147, 20, 24, 3, 244, 248decmac 11566 . . . . . . . . 9  |-  ( (;; 2 0 4  x.  2 )  +  ( 9  +  1 ) )  = ;; 4 1 8
25064, 51, 203addcomli 10228 . . . . . . . . . 10  |-  ( 2  +  4 )  =  6
25116, 20, 2, 52, 250decaddi 11579 . . . . . . . . 9  |-  ( ( 6  x.  2 )  +  4 )  = ; 1
6
25236, 15, 12, 2, 219, 239, 20, 15, 16, 249, 251decmac 11566 . . . . . . . 8  |-  ( (;;; 2 0 4 6  x.  2 )  +  (; 9
4  +  0 ) )  = ;;; 4 1 8 6
253167mul01i 10226 . . . . . . . . . 10  |-  (;;; 2 0 4 6  x.  0 )  =  0
254253oveq1i 6660 . . . . . . . . 9  |-  ( (;;; 2 0 4 6  x.  0 )  +  1 )  =  ( 0  +  1 )
255254, 188, 2103eqtri 2648 . . . . . . . 8  |-  ( (;;; 2 0 4 6  x.  0 )  +  1 )  = ; 0 1
25620, 3, 13, 16, 226, 237, 37, 16, 3, 252, 255decma2c 11568 . . . . . . 7  |-  ( (;;; 2 0 4 6  x. ; 2
0 )  +  (;; 1 2 2  + ;; 8 1 9 ) )  = ;;;; 4 1 8 6 1
25741dec0h 11522 . . . . . . . . 9  |-  3  = ; 0 3
258188, 16eqeltri 2697 . . . . . . . . . 10  |-  ( 0  +  1 )  e. 
NN0
25964mul02i 10225 . . . . . . . . . . . 12  |-  ( 0  x.  4 )  =  0
260259, 188oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 0  x.  4 )  +  ( 0  +  1 ) )  =  ( 0  +  1 )
261260, 188eqtri 2644 . . . . . . . . . 10  |-  ( ( 0  x.  4 )  +  ( 0  +  1 ) )  =  1
26220, 3, 258, 226, 2, 122, 261decrmanc 11576 . . . . . . . . 9  |-  ( (; 2
0  x.  4 )  +  ( 0  +  1 ) )  = ; 8
1
263 6p3e9 11170 . . . . . . . . . 10  |-  ( 6  +  3 )  =  9
26416, 15, 41, 103, 263decaddi 11579 . . . . . . . . 9  |-  ( ( 4  x.  4 )  +  3 )  = ; 1
9
26535, 2, 3, 41, 222, 257, 2, 12, 16, 262, 264decmac 11566 . . . . . . . 8  |-  ( (;; 2 0 4  x.  4 )  +  3 )  = ;; 8 1 9
266153, 64, 191addcomli 10228 . . . . . . . . 9  |-  ( 4  +  7 )  = ; 1
1
26720, 2, 28, 95, 232, 16, 266decaddci 11580 . . . . . . . 8  |-  ( ( 6  x.  4 )  +  7 )  = ; 3
1
26836, 15, 28, 219, 2, 16, 41, 265, 267decrmac 11577 . . . . . . 7  |-  ( (;;; 2 0 4 6  x.  4 )  +  7 )  = ;;; 8 1 9 1
26935, 2, 220, 28, 222, 223, 37, 16, 225, 256, 268decma2c 11568 . . . . . 6  |-  ( (;;; 2 0 4 6  x. ;; 2 0 4 )  + ;;; 1 2 2 7 )  = ;;;;; 4 1 8 6 1 1
27050mul02i 10225 . . . . . . . . . . 11  |-  ( 0  x.  6 )  =  0
271270oveq1i 6660 . . . . . . . . . 10  |-  ( ( 0  x.  6 )  +  2 )  =  ( 0  +  2 )
272271, 132eqtri 2644 . . . . . . . . 9  |-  ( ( 0  x.  6 )  +  2 )  =  2
27320, 3, 20, 226, 15, 53, 272decrmanc 11576 . . . . . . . 8  |-  ( (; 2
0  x.  6 )  +  2 )  = ;; 1 2 2
274 4p3e7 11163 . . . . . . . . 9  |-  ( 4  +  3 )  =  7
27520, 2, 41, 96, 274decaddi 11579 . . . . . . . 8  |-  ( ( 4  x.  6 )  +  3 )  = ; 2
7
27635, 2, 41, 222, 15, 28, 20, 273, 275decrmac 11577 . . . . . . 7  |-  ( (;; 2 0 4  x.  6 )  +  3 )  = ;;; 1 2 2 7
27715, 36, 15, 219, 15, 41, 276, 90decmul1c 11587 . . . . . 6  |-  (;;; 2 0 4 6  x.  6 )  = ;;;; 1 2 2 7 6
27837, 36, 15, 219, 15, 221, 269, 277decmul2c 11589 . . . . 5  |-  (;;; 2 0 4 6  x. ;;; 2 0 4 6 )  = ;;;;;; 4 1 8 6 1 1 6
279218, 278eqtr4i 2647 . . . 4  |-  ( (;;; 1 0 4 6  x.  N )  + ;;; 1 0 7 0 )  =  (;;; 2 0 4 6  x. ;;; 2 0 4 6 )
2808, 9, 31, 34, 37, 30, 178, 183, 279mod2xi 15773 . . 3  |-  ( ( 2 ^; 5 0 )  mod 
N )  =  (;;; 1 0 7 0  mod 
N )
28123nn0cni 11304 . . . 4  |- ; 5 0  e.  CC
282 eqid 2622 . . . . 5  |- ; 5 0  = ; 5 0
28320, 22, 3, 282, 3, 181, 241decmul1 11585 . . . 4  |-  (; 5 0  x.  2 )  = ;; 1 0 0
284281, 51, 283mulcomli 10047 . . 3  |-  ( 2  x. ; 5 0 )  = ;; 1 0 0
285 eqid 2622 . . . . 5  |- ;; 6 1 4  = ;; 6 1 4
28620, 12deccl 11512 . . . . 5  |- ; 2 9  e.  NN0
287 eqid 2622 . . . . . . 7  |- ; 6 1  = ; 6 1
288 eqid 2622 . . . . . . 7  |- ; 2 9  = ; 2 9
289199oveq1i 6660 . . . . . . . 8  |-  ( ( 6  +  2 )  +  1 )  =  ( 8  +  1 )
290289, 125eqtri 2644 . . . . . . 7  |-  ( ( 6  +  2 )  +  1 )  =  9
29115, 16, 20, 12, 287, 288, 290, 148decaddc2 11575 . . . . . 6  |-  (; 6 1  + ; 2 9 )  = ; 9
0
29261, 3eqeltri 2697 . . . . . . . 8  |-  ( 0  +  0 )  e. 
NN0
293 eqid 2622 . . . . . . . 8  |- ;; 2 8 6  = ;; 2 8 6
294 eqid 2622 . . . . . . . . 9  |- ; 2 8  = ; 2 8
295122oveq1i 6660 . . . . . . . . . 10  |-  ( ( 2  x.  4 )  +  3 )  =  ( 8  +  3 )
296 8p3e11 11612 . . . . . . . . . 10  |-  ( 8  +  3 )  = ; 1
1
297295, 296eqtri 2644 . . . . . . . . 9  |-  ( ( 2  x.  4 )  +  3 )  = ; 1
1
298 8t4e32 11656 . . . . . . . . . 10  |-  ( 8  x.  4 )  = ; 3
2
29941, 20, 20, 298, 88decaddi 11579 . . . . . . . . 9  |-  ( ( 8  x.  4 )  +  2 )  = ; 3
4
30020, 24, 20, 294, 2, 2, 41, 297, 299decrmac 11577 . . . . . . . 8  |-  ( (; 2
8  x.  4 )  +  2 )  = ;; 1 1 4
30195, 61oveq12i 6662 . . . . . . . . 9  |-  ( ( 6  x.  4 )  +  ( 0  +  0 ) )  =  (; 2 4  +  0 )
30238nn0cni 11304 . . . . . . . . . 10  |- ; 2 4  e.  CC
303302addid1i 10223 . . . . . . . . 9  |-  (; 2 4  +  0 )  = ; 2 4
304301, 303eqtri 2644 . . . . . . . 8  |-  ( ( 6  x.  4 )  +  ( 0  +  0 ) )  = ; 2
4
30525, 15, 292, 293, 2, 2, 20, 300, 304decrmac 11577 . . . . . . 7  |-  ( (;; 2 8 6  x.  4 )  +  ( 0  +  0 ) )  = ;;; 1 1 4 4
30626nn0cni 11304 . . . . . . . . . 10  |- ;; 2 8 6  e.  CC
307306mul01i 10226 . . . . . . . . 9  |-  (;; 2 8 6  x.  0 )  =  0
308307oveq1i 6660 . . . . . . . 8  |-  ( (;; 2 8 6  x.  0 )  +  9 )  =  ( 0  +  9 )
309308, 75, 583eqtri 2648 . . . . . . 7  |-  ( (;; 2 8 6  x.  0 )  +  9 )  = ; 0 9
3102, 3, 3, 12, 60, 59, 26, 12, 3, 305, 309decma2c 11568 . . . . . 6  |-  ( (;; 2 8 6  x. ; 4
0 )  +  ( 9  +  0 ) )  = ;;;; 1 1 4 4 9
311307oveq1i 6660 . . . . . . 7  |-  ( (;; 2 8 6  x.  0 )  +  0 )  =  ( 0  +  0 )
312311, 61, 623eqtri 2648 . . . . . 6  |-  ( (;; 2 8 6  x.  0 )  +  0 )  = ; 0 0
3134, 3, 12, 3, 55, 291, 26, 3, 3, 310, 312decma2c 11568 . . . . 5  |-  ( (;; 2 8 6  x. ;; 4 0 0 )  +  (; 6 1  + ; 2 9 ) )  = ;;;;; 1 1 4 4 9 0
314230mulid1i 10042 . . . . . . . 8  |-  ( 8  x.  1 )  =  8
31516, 20, 24, 294, 24, 109, 314decmul1 11585 . . . . . . 7  |-  (; 2 8  x.  1 )  = ; 2 8
31620, 24, 125, 315decsuc 11535 . . . . . 6  |-  ( (; 2
8  x.  1 )  +  1 )  = ; 2
9
31750mulid1i 10042 . . . . . . . 8  |-  ( 6  x.  1 )  =  6
318317oveq1i 6660 . . . . . . 7  |-  ( ( 6  x.  1 )  +  4 )  =  ( 6  +  4 )
319318, 92eqtri 2644 . . . . . 6  |-  ( ( 6  x.  1 )  +  4 )  = ; 1
0
32025, 15, 2, 293, 16, 3, 16, 316, 319decrmac 11577 . . . . 5  |-  ( (;; 2 8 6  x.  1 )  +  4 )  = ;; 2 9 0
3215, 16, 17, 2, 1, 285, 26, 3, 286, 313, 320decma2c 11568 . . . 4  |-  ( (;; 2 8 6  x.  N )  + ;; 6 1 4 )  = ;;;;;; 1 1 4 4 9 0 0
32216, 16deccl 11512 . . . . . . . . 9  |- ; 1 1  e.  NN0
323322, 2deccl 11512 . . . . . . . 8  |- ;; 1 1 4  e.  NN0
324323, 2deccl 11512 . . . . . . 7  |- ;;; 1 1 4 4  e.  NN0
325324, 12deccl 11512 . . . . . 6  |- ;;;; 1 1 4 4 9  e.  NN0
32628, 2deccl 11512 . . . . . . . 8  |- ; 7 4  e.  NN0
327326, 12deccl 11512 . . . . . . 7  |- ;; 7 4 9  e.  NN0
328 eqid 2622 . . . . . . . 8  |- ; 1 0  = ; 1 0
329 eqid 2622 . . . . . . . 8  |- ;; 7 4 9  = ;; 7 4 9
330326nn0cni 11304 . . . . . . . . . 10  |- ; 7 4  e.  CC
331330addid1i 10223 . . . . . . . . 9  |-  (; 7 4  +  0 )  = ; 7 4
332153addid1i 10223 . . . . . . . . . . 11  |-  ( 7  +  0 )  =  7
333332, 28eqeltri 2697 . . . . . . . . . 10  |-  ( 7  +  0 )  e. 
NN0
33410nn0cni 11304 . . . . . . . . . . . 12  |- ; 1 0  e.  CC
335334mulid1i 10042 . . . . . . . . . . 11  |-  (; 1 0  x.  1 )  = ; 1 0
33616, 3, 188, 335decsuc 11535 . . . . . . . . . 10  |-  ( (; 1
0  x.  1 )  +  1 )  = ; 1
1
337153mulid1i 10042 . . . . . . . . . . . 12  |-  ( 7  x.  1 )  =  7
338337, 332oveq12i 6662 . . . . . . . . . . 11  |-  ( ( 7  x.  1 )  +  ( 7  +  0 ) )  =  ( 7  +  7 )
339 7p7e14 11609 . . . . . . . . . . 11  |-  ( 7  +  7 )  = ; 1
4
340338, 339eqtri 2644 . . . . . . . . . 10  |-  ( ( 7  x.  1 )  +  ( 7  +  0 ) )  = ; 1
4
34110, 28, 333, 186, 16, 2, 16, 336, 340decrmac 11577 . . . . . . . . 9  |-  ( (;; 1 0 7  x.  1 )  +  ( 7  +  0 ) )  = ;; 1 1 4
34269mul02i 10225 . . . . . . . . . . 11  |-  ( 0  x.  1 )  =  0
343342oveq1i 6660 . . . . . . . . . 10  |-  ( ( 0  x.  1 )  +  4 )  =  ( 0  +  4 )
34464addid2i 10224 . . . . . . . . . 10  |-  ( 0  +  4 )  =  4
345343, 344, 1143eqtri 2648 . . . . . . . . 9  |-  ( ( 0  x.  1 )  +  4 )  = ; 0
4
34629, 3, 28, 2, 184, 331, 16, 2, 3, 341, 345decmac 11566 . . . . . . . 8  |-  ( (;;; 1 0 7 0  x.  1 )  +  (; 7
4  +  0 ) )  = ;;; 1 1 4 4
34730nn0cni 11304 . . . . . . . . . . 11  |- ;;; 1 0 7 0  e.  CC
348347mul01i 10226 . . . . . . . . . 10  |-  (;;; 1 0 7 0  x.  0 )  =  0
349348oveq1i 6660 . . . . . . . . 9  |-  ( (;;; 1 0 7 0  x.  0 )  +  9 )  =  ( 0  +  9 )
350349, 75, 583eqtri 2648 . . . . . . . 8  |-  ( (;;; 1 0 7 0  x.  0 )  +  9 )  = ; 0 9
35116, 3, 326, 12, 328, 329, 30, 12, 3, 346, 350decma2c 11568 . . . . . . 7  |-  ( (;;; 1 0 7 0  x. ; 1
0 )  + ;; 7 4 9 )  = ;;;; 1 1 4 4 9
352 dfdec10 11497 . . . . . . . . . 10  |- ; 7 4  =  ( (; 1 0  x.  7 )  +  4 )
353352eqcomi 2631 . . . . . . . . 9  |-  ( (; 1
0  x.  7 )  +  4 )  = ; 7
4
354 7t7e49 11653 . . . . . . . . 9  |-  ( 7  x.  7 )  = ; 4
9
35528, 10, 28, 186, 12, 2, 353, 354decmul1c 11587 . . . . . . . 8  |-  (;; 1 0 7  x.  7 )  = ;; 7 4 9
356153mul02i 10225 . . . . . . . 8  |-  ( 0  x.  7 )  =  0
35728, 29, 3, 184, 3, 355, 356decmul1 11585 . . . . . . 7  |-  (;;; 1 0 7 0  x.  7 )  = ;;; 7 4 9 0
35830, 10, 28, 186, 3, 327, 351, 357decmul2c 11589 . . . . . 6  |-  (;;; 1 0 7 0  x. ;; 1 0 7 )  = ;;;;; 1 1 4 4 9 0
359325, 3, 3, 358, 61decaddi 11579 . . . . 5  |-  ( (;;; 1 0 7 0  x. ;; 1 0 7 )  +  0 )  = ;;;;; 1 1 4 4 9 0
360348, 62eqtri 2644 . . . . 5  |-  (;;; 1 0 7 0  x.  0 )  = ; 0
0
36130, 29, 3, 184, 3, 3, 359, 360decmul2c 11589 . . . 4  |-  (;;; 1 0 7 0  x. ;;; 1 0 7 0 )  = ;;;;;; 1 1 4 4 9 0 0
362321, 361eqtr4i 2647 . . 3  |-  ( (;; 2 8 6  x.  N )  + ;; 6 1 4 )  =  (;;; 1 0 7 0  x. ;;; 1 0 7 0 )
3638, 9, 23, 27, 30, 18, 280, 284, 362mod2xi 15773 . 2  |-  ( ( 2 ^;; 1 0 0 )  mod 
N )  =  (;; 6 1 4  mod 
N )
36411nn0cni 11304 . . 3  |- ;; 1 0 0  e.  CC
365 eqid 2622 . . . 4  |- ;; 1 0 0  = ;; 1 0 0
36620, 10, 3, 365, 3, 173, 241decmul1 11585 . . 3  |-  (;; 1 0 0  x.  2 )  = ;; 2 0 0
367364, 51, 366mulcomli 10047 . 2  |-  ( 2  x. ;; 1 0 0 )  = ;; 2 0 0
368 eqid 2622 . . . 4  |- ;; 9 0 2  = ;; 9 0 2
369 eqid 2622 . . . . . 6  |- ; 9 0  = ; 9 0
37012, 3, 12, 369, 75decaddi 11579 . . . . 5  |-  (; 9 0  +  9 )  = ; 9 9
371 eqid 2622 . . . . . . 7  |- ; 9 4  = ; 9 4
372 6p1e7 11156 . . . . . . . 8  |-  ( 6  +  1 )  =  7
373 9t4e36 11665 . . . . . . . 8  |-  ( 9  x.  4 )  = ; 3
6
37441, 15, 372, 373decsuc 11535 . . . . . . 7  |-  ( ( 9  x.  4 )  +  1 )  = ; 3
7
375103, 61oveq12i 6662 . . . . . . . 8  |-  ( ( 4  x.  4 )  +  ( 0  +  0 ) )  =  (; 1 6  +  0 )
37616, 15deccl 11512 . . . . . . . . . 10  |- ; 1 6  e.  NN0
377376nn0cni 11304 . . . . . . . . 9  |- ; 1 6  e.  CC
378377addid1i 10223 . . . . . . . 8  |-  (; 1 6  +  0 )  = ; 1 6
379375, 378eqtri 2644 . . . . . . 7  |-  ( ( 4  x.  4 )  +  ( 0  +  0 ) )  = ; 1
6
38012, 2, 292, 371, 2, 15, 16, 374, 379decrmac 11577 . . . . . 6  |-  ( (; 9
4  x.  4 )  +  ( 0  +  0 ) )  = ;; 3 7 6
381238mul01i 10226 . . . . . . . 8  |-  (; 9 4  x.  0 )  =  0
382381oveq1i 6660 . . . . . . 7  |-  ( (; 9
4  x.  0 )  +  9 )  =  ( 0  +  9 )
383382, 75, 583eqtri 2648 . . . . . 6  |-  ( (; 9
4  x.  0 )  +  9 )  = ; 0
9
3842, 3, 3, 12, 60, 59, 13, 12, 3, 380, 383decma2c 11568 . . . . 5  |-  ( (; 9
4  x. ; 4 0 )  +  ( 9  +  0 ) )  = ;;; 3 7 6 9
3854, 3, 12, 12, 55, 370, 13, 12, 3, 384, 383decma2c 11568 . . . 4  |-  ( (; 9
4  x. ;; 4 0 0 )  +  (; 9 0  +  9 ) )  = ;;;; 3 7 6 9 9
38656mulid1i 10042 . . . . 5  |-  ( 9  x.  1 )  =  9
38764mulid1i 10042 . . . . . . 7  |-  ( 4  x.  1 )  =  4
388387oveq1i 6660 . . . . . 6  |-  ( ( 4  x.  1 )  +  2 )  =  ( 4  +  2 )
389388, 203eqtri 2644 . . . . 5  |-  ( ( 4  x.  1 )  +  2 )  =  6
39012, 2, 20, 371, 16, 386, 389decrmanc 11576 . . . 4  |-  ( (; 9
4  x.  1 )  +  2 )  = ; 9
6
3915, 16, 19, 20, 1, 368, 13, 15, 12, 385, 390decma2c 11568 . . 3  |-  ( (; 9
4  x.  N )  + ;; 9 0 2 )  = ;;;;; 3 7 6 9 9 6
39238, 22deccl 11512 . . . 4  |- ;; 2 4 5  e.  NN0
393 eqid 2622 . . . . 5  |- ;; 2 4 5  = ;; 2 4 5
39450, 51, 199addcomli 10228 . . . . . . 7  |-  ( 2  +  6 )  =  8
39520, 2, 15, 16, 165, 287, 394, 101decadd 11570 . . . . . 6  |-  (; 2 4  + ; 6 1 )  = ; 8
5
396 8p2e10 11610 . . . . . . 7  |-  ( 8  +  2 )  = ; 1
0
39741, 15, 372, 90decsuc 11535 . . . . . . 7  |-  ( ( 6  x.  6 )  +  1 )  = ; 3
7
39850mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  6 )  =  6
399398oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  6 )  +  0 )  =  ( 6  +  0 )
40050addid1i 10223 . . . . . . . 8  |-  ( 6  +  0 )  =  6
401399, 400eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  6 )  +  0 )  =  6
40215, 16, 16, 3, 287, 396, 15, 397, 401decma 11564 . . . . . 6  |-  ( (; 6
1  x.  6 )  +  ( 8  +  2 ) )  = ;; 3 7 6
40317, 2, 24, 22, 285, 395, 15, 12, 20, 402, 99decmac 11566 . . . . 5  |-  ( (;; 6 1 4  x.  6 )  +  (; 2
4  + ; 6 1 ) )  = ;;; 3 7 6 9
40416, 15, 16, 287, 16, 317, 78decmul1 11585 . . . . . 6  |-  (; 6 1  x.  1 )  = ; 6 1
405387oveq1i 6660 . . . . . . 7  |-  ( ( 4  x.  1 )  +  5 )  =  ( 4  +  5 )
406405, 98eqtri 2644 . . . . . 6  |-  ( ( 4  x.  1 )  +  5 )  =  9
40717, 2, 22, 285, 16, 404, 406decrmanc 11576 . . . . 5  |-  ( (;; 6 1 4  x.  1 )  +  5 )  = ;; 6 1 9
40815, 16, 38, 22, 287, 393, 18, 12, 17, 403, 407decma2c 11568 . . . 4  |-  ( (;; 6 1 4  x. ; 6
1 )  + ;; 2 4 5 )  = ;;;; 3 7 6 9 9
40965oveq1i 6660 . . . . . . 7  |-  ( ( 1  x.  4 )  +  1 )  =  ( 4  +  1 )
410409, 101eqtri 2644 . . . . . 6  |-  ( ( 1  x.  4 )  +  1 )  =  5
41115, 16, 16, 287, 2, 95, 410decrmanc 11576 . . . . 5  |-  ( (; 6
1  x.  4 )  +  1 )  = ;; 2 4 5
4122, 17, 2, 285, 15, 16, 411, 103decmul1c 11587 . . . 4  |-  (;; 6 1 4  x.  4 )  = ;;; 2 4 5 6
41318, 17, 2, 285, 15, 392, 408, 412decmul2c 11589 . . 3  |-  (;; 6 1 4  x. ;; 6 1 4 )  = ;;;;; 3 7 6 9 9 6
414391, 413eqtr4i 2647 . 2  |-  ( (; 9
4  x.  N )  + ;; 9 0 2 )  =  (;; 6 1 4  x. ;; 6 1 4 )
4158, 9, 11, 14, 18, 21, 363, 367, 414mod2xi 15773 1  |-  ( ( 2 ^;; 2 0 0 )  mod 
N )  =  (;; 9 0 2  mod 
N )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   8c8 11076   9c9 11077   NN0cn0 11292  ;cdc 11493    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  4001lem2  15849  4001lem3  15850
  Copyright terms: Public domain W3C validator