MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem4 Structured version   Visualization version   Unicode version

Theorem 1259lem4 15841
Description: Lemma for 1259prm 15843. Calculate a power mod. In decimal, we calculate  2 ^ 3 0 6  =  ( 2 ^ 7 6 ) ^ 4  x.  4  ==  5 ^ 4  x.  4  =  2 N  -  1 8,  2 ^ 6 1 2  =  ( 2 ^ 3 0 6 ) ^ 2  ==  1 8 ^ 2  =  3 2 4,  2 ^ 6 2 9  =  2 ^ 6 1 2  x.  2 ^ 1 7  ==  3 2 4  x.  1 3 6  =  3 5 N  -  1 and finally  2 ^ ( N  -  1 )  =  ( 2 ^ 6 2 9 ) ^ 2  ==  1 ^ 2  =  1. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) (Proof shortened by AV, 16-Sep-2021.)
Hypothesis
Ref Expression
1259prm.1  |-  N  = ;;; 1 2 5 9
Assertion
Ref Expression
1259lem4  |-  ( ( 2 ^ ( N  -  1 ) )  mod  N )  =  ( 1  mod  N
)

Proof of Theorem 1259lem4
StepHypRef Expression
1 2nn 11185 . 2  |-  2  e.  NN
2 6nn0 11313 . . . 4  |-  6  e.  NN0
3 2nn0 11309 . . . 4  |-  2  e.  NN0
42, 3deccl 11512 . . 3  |- ; 6 2  e.  NN0
5 9nn0 11316 . . 3  |-  9  e.  NN0
64, 5deccl 11512 . 2  |- ;; 6 2 9  e.  NN0
7 0z 11388 . 2  |-  0  e.  ZZ
8 1nn 11031 . 2  |-  1  e.  NN
9 1nn0 11308 . 2  |-  1  e.  NN0
109, 3deccl 11512 . . . . . . 7  |- ; 1 2  e.  NN0
11 5nn0 11312 . . . . . . 7  |-  5  e.  NN0
1210, 11deccl 11512 . . . . . 6  |- ;; 1 2 5  e.  NN0
13 8nn0 11315 . . . . . 6  |-  8  e.  NN0
1412, 13deccl 11512 . . . . 5  |- ;;; 1 2 5 8  e.  NN0
1514nn0cni 11304 . . . 4  |- ;;; 1 2 5 8  e.  CC
16 ax-1cn 9994 . . . 4  |-  1  e.  CC
17 1259prm.1 . . . . 5  |-  N  = ;;; 1 2 5 9
18 8p1e9 11158 . . . . . 6  |-  ( 8  +  1 )  =  9
19 eqid 2622 . . . . . 6  |- ;;; 1 2 5 8  = ;;; 1 2 5 8
2012, 13, 18, 19decsuc 11535 . . . . 5  |-  (;;; 1 2 5 8  +  1 )  = ;;; 1 2 5 9
2117, 20eqtr4i 2647 . . . 4  |-  N  =  (;;; 1 2 5 8  +  1 )
2215, 16, 21mvrraddi 10298 . . 3  |-  ( N  -  1 )  = ;;; 1 2 5 8
2322, 14eqeltri 2697 . 2  |-  ( N  -  1 )  e. 
NN0
24 9nn 11192 . . . . 5  |-  9  e.  NN
2512, 24decnncl 11518 . . . 4  |- ;;; 1 2 5 9  e.  NN
2617, 25eqeltri 2697 . . 3  |-  N  e.  NN
272, 9deccl 11512 . . . 4  |- ; 6 1  e.  NN0
2827, 3deccl 11512 . . 3  |- ;; 6 1 2  e.  NN0
29 3nn0 11310 . . . . 5  |-  3  e.  NN0
30 4nn0 11311 . . . . 5  |-  4  e.  NN0
3129, 30deccl 11512 . . . 4  |- ; 3 4  e.  NN0
3231nn0zi 11402 . . 3  |- ; 3 4  e.  ZZ
3329, 3deccl 11512 . . . 4  |- ; 3 2  e.  NN0
3433, 30deccl 11512 . . 3  |- ;; 3 2 4  e.  NN0
35 7nn0 11314 . . . 4  |-  7  e.  NN0
369, 35deccl 11512 . . 3  |- ; 1 7  e.  NN0
379, 29deccl 11512 . . . 4  |- ; 1 3  e.  NN0
3837, 2deccl 11512 . . 3  |- ;; 1 3 6  e.  NN0
39 0nn0 11307 . . . . . 6  |-  0  e.  NN0
4029, 39deccl 11512 . . . . 5  |- ; 3 0  e.  NN0
4140, 2deccl 11512 . . . 4  |- ;; 3 0 6  e.  NN0
42 8nn 11191 . . . . 5  |-  8  e.  NN
439, 42decnncl 11518 . . . 4  |- ; 1 8  e.  NN
4410, 30deccl 11512 . . . . 5  |- ;; 1 2 4  e.  NN0
4544, 9deccl 11512 . . . 4  |- ;;; 1 2 4 1  e.  NN0
469, 11deccl 11512 . . . . . 6  |- ; 1 5  e.  NN0
4746, 29deccl 11512 . . . . 5  |- ;; 1 5 3  e.  NN0
48 1z 11407 . . . . 5  |-  1  e.  ZZ
4911, 39deccl 11512 . . . . 5  |- ; 5 0  e.  NN0
5046, 3deccl 11512 . . . . . 6  |- ;; 1 5 2  e.  NN0
513, 11deccl 11512 . . . . . 6  |- ; 2 5  e.  NN0
5235, 2deccl 11512 . . . . . . 7  |- ; 7 6  e.  NN0
53171259lem3 15840 . . . . . . 7  |-  ( ( 2 ^; 7 6 )  mod 
N )  =  ( 5  mod  N )
54 eqid 2622 . . . . . . . 8  |- ; 7 6  = ; 7 6
55 4p1e5 11154 . . . . . . . . 9  |-  ( 4  +  1 )  =  5
56 7cn 11104 . . . . . . . . . 10  |-  7  e.  CC
57 2cn 11091 . . . . . . . . . 10  |-  2  e.  CC
58 7t2e14 11648 . . . . . . . . . 10  |-  ( 7  x.  2 )  = ; 1
4
5956, 57, 58mulcomli 10047 . . . . . . . . 9  |-  ( 2  x.  7 )  = ; 1
4
609, 30, 55, 59decsuc 11535 . . . . . . . 8  |-  ( ( 2  x.  7 )  +  1 )  = ; 1
5
61 6cn 11102 . . . . . . . . 9  |-  6  e.  CC
62 6t2e12 11641 . . . . . . . . 9  |-  ( 6  x.  2 )  = ; 1
2
6361, 57, 62mulcomli 10047 . . . . . . . 8  |-  ( 2  x.  6 )  = ; 1
2
643, 35, 2, 54, 3, 9, 60, 63decmul2c 11589 . . . . . . 7  |-  ( 2  x. ; 7 6 )  = ;; 1 5 2
6551nn0cni 11304 . . . . . . . . 9  |- ; 2 5  e.  CC
6665addid2i 10224 . . . . . . . 8  |-  ( 0  + ; 2 5 )  = ; 2
5
6726nncni 11030 . . . . . . . . . 10  |-  N  e.  CC
6867mul02i 10225 . . . . . . . . 9  |-  ( 0  x.  N )  =  0
6968oveq1i 6660 . . . . . . . 8  |-  ( ( 0  x.  N )  + ; 2 5 )  =  ( 0  + ; 2 5 )
70 5t5e25 11639 . . . . . . . 8  |-  ( 5  x.  5 )  = ; 2
5
7166, 69, 703eqtr4i 2654 . . . . . . 7  |-  ( ( 0  x.  N )  + ; 2 5 )  =  ( 5  x.  5 )
7226, 1, 52, 7, 11, 51, 53, 64, 71mod2xi 15773 . . . . . 6  |-  ( ( 2 ^;; 1 5 2 )  mod 
N )  =  (; 2
5  mod  N )
73 2p1e3 11151 . . . . . . 7  |-  ( 2  +  1 )  =  3
74 eqid 2622 . . . . . . 7  |- ;; 1 5 2  = ;; 1 5 2
7546, 3, 73, 74decsuc 11535 . . . . . 6  |-  (;; 1 5 2  +  1 )  = ;; 1 5 3
7649nn0cni 11304 . . . . . . . 8  |- ; 5 0  e.  CC
7776addid2i 10224 . . . . . . 7  |-  ( 0  + ; 5 0 )  = ; 5
0
7868oveq1i 6660 . . . . . . 7  |-  ( ( 0  x.  N )  + ; 5 0 )  =  ( 0  + ; 5 0 )
79 eqid 2622 . . . . . . . 8  |- ; 2 5  = ; 2 5
80 2t2e4 11177 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
8180oveq1i 6660 . . . . . . . . 9  |-  ( ( 2  x.  2 )  +  1 )  =  ( 4  +  1 )
8281, 55eqtri 2644 . . . . . . . 8  |-  ( ( 2  x.  2 )  +  1 )  =  5
83 5t2e10 11634 . . . . . . . 8  |-  ( 5  x.  2 )  = ; 1
0
843, 3, 11, 79, 39, 9, 82, 83decmul1c 11587 . . . . . . 7  |-  (; 2 5  x.  2 )  = ; 5 0
8577, 78, 843eqtr4i 2654 . . . . . 6  |-  ( ( 0  x.  N )  + ; 5 0 )  =  (; 2 5  x.  2 )
8626, 1, 50, 7, 51, 49, 72, 75, 85modxp1i 15774 . . . . 5  |-  ( ( 2 ^;; 1 5 3 )  mod 
N )  =  (; 5
0  mod  N )
87 eqid 2622 . . . . . 6  |- ;; 1 5 3  = ;; 1 5 3
88 eqid 2622 . . . . . . . . 9  |- ; 1 5  = ; 1 5
8957mulid1i 10042 . . . . . . . . . . 11  |-  ( 2  x.  1 )  =  2
9089oveq1i 6660 . . . . . . . . . 10  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
9190, 73eqtri 2644 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  1 )  =  3
92 5cn 11100 . . . . . . . . . 10  |-  5  e.  CC
9392, 57, 83mulcomli 10047 . . . . . . . . 9  |-  ( 2  x.  5 )  = ; 1
0
943, 9, 11, 88, 39, 9, 91, 93decmul2c 11589 . . . . . . . 8  |-  ( 2  x. ; 1 5 )  = ; 3
0
9594oveq1i 6660 . . . . . . 7  |-  ( ( 2  x. ; 1 5 )  +  0 )  =  (; 3
0  +  0 )
9640nn0cni 11304 . . . . . . . 8  |- ; 3 0  e.  CC
9796addid1i 10223 . . . . . . 7  |-  (; 3 0  +  0 )  = ; 3 0
9895, 97eqtri 2644 . . . . . 6  |-  ( ( 2  x. ; 1 5 )  +  0 )  = ; 3 0
99 3cn 11095 . . . . . . . 8  |-  3  e.  CC
100 3t2e6 11179 . . . . . . . 8  |-  ( 3  x.  2 )  =  6
10199, 57, 100mulcomli 10047 . . . . . . 7  |-  ( 2  x.  3 )  =  6
1022dec0h 11522 . . . . . . 7  |-  6  = ; 0 6
103101, 102eqtri 2644 . . . . . 6  |-  ( 2  x.  3 )  = ; 0
6
1043, 46, 29, 87, 2, 39, 98, 103decmul2c 11589 . . . . 5  |-  ( 2  x. ;; 1 5 3 )  = ;; 3 0 6
10567mulid2i 10043 . . . . . . . 8  |-  ( 1  x.  N )  =  N
106105, 17eqtri 2644 . . . . . . 7  |-  ( 1  x.  N )  = ;;; 1 2 5 9
107 eqid 2622 . . . . . . 7  |- ;;; 1 2 4 1  = ;;; 1 2 4 1
1083, 30deccl 11512 . . . . . . . 8  |- ; 2 4  e.  NN0
109 eqid 2622 . . . . . . . . 9  |- ; 2 4  = ; 2 4
1103, 30, 55, 109decsuc 11535 . . . . . . . 8  |-  (; 2 4  +  1 )  = ; 2 5
111 eqid 2622 . . . . . . . . 9  |- ;; 1 2 5  = ;; 1 2 5
112 eqid 2622 . . . . . . . . 9  |- ;; 1 2 4  = ;; 1 2 4
113 eqid 2622 . . . . . . . . . 10  |- ; 1 2  = ; 1 2
114 1p1e2 11134 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
115 2p2e4 11144 . . . . . . . . . 10  |-  ( 2  +  2 )  =  4
1169, 3, 9, 3, 113, 113, 114, 115decadd 11570 . . . . . . . . 9  |-  (; 1 2  + ; 1 2 )  = ; 2
4
117 5p4e9 11167 . . . . . . . . 9  |-  ( 5  +  4 )  =  9
11810, 11, 10, 30, 111, 112, 116, 117decadd 11570 . . . . . . . 8  |-  (;; 1 2 5  + ;; 1 2 4 )  = ;; 2 4 9
119108, 110, 118decsucc 11550 . . . . . . 7  |-  ( (;; 1 2 5  + ;; 1 2 4 )  +  1 )  = ;; 2 5 0
120 9p1e10 11496 . . . . . . 7  |-  ( 9  +  1 )  = ; 1
0
12112, 5, 44, 9, 106, 107, 119, 120decaddc2 11575 . . . . . 6  |-  ( ( 1  x.  N )  + ;;; 1 2 4 1 )  = ;;; 2 5 0 0
122 eqid 2622 . . . . . . 7  |- ; 5 0  = ; 5 0
12392mul02i 10225 . . . . . . . . . 10  |-  ( 0  x.  5 )  =  0
12411, 11, 39, 122, 39, 70, 123decmul1 11585 . . . . . . . . 9  |-  (; 5 0  x.  5 )  = ;; 2 5 0
125124oveq1i 6660 . . . . . . . 8  |-  ( (; 5
0  x.  5 )  +  0 )  =  (;; 2 5 0  +  0 )
12651, 39deccl 11512 . . . . . . . . . 10  |- ;; 2 5 0  e.  NN0
127126nn0cni 11304 . . . . . . . . 9  |- ;; 2 5 0  e.  CC
128127addid1i 10223 . . . . . . . 8  |-  (;; 2 5 0  +  0 )  = ;; 2 5 0
129125, 128eqtri 2644 . . . . . . 7  |-  ( (; 5
0  x.  5 )  +  0 )  = ;; 2 5 0
13076mul01i 10226 . . . . . . . 8  |-  (; 5 0  x.  0 )  =  0
13139dec0h 11522 . . . . . . . 8  |-  0  = ; 0 0
132130, 131eqtri 2644 . . . . . . 7  |-  (; 5 0  x.  0 )  = ; 0 0
13349, 11, 39, 122, 39, 39, 129, 132decmul2c 11589 . . . . . 6  |-  (; 5 0  x. ; 5 0 )  = ;;; 2 5 0 0
134121, 133eqtr4i 2647 . . . . 5  |-  ( ( 1  x.  N )  + ;;; 1 2 4 1 )  =  (; 5 0  x. ; 5 0 )
13526, 1, 47, 48, 49, 45, 86, 104, 134mod2xi 15773 . . . 4  |-  ( ( 2 ^;; 3 0 6 )  mod 
N )  =  (;;; 1 2 4 1  mod 
N )
136 eqid 2622 . . . . 5  |- ;; 3 0 6  = ;; 3 0 6
137 eqid 2622 . . . . . 6  |- ; 3 0  = ; 3 0
1389dec0h 11522 . . . . . 6  |-  1  = ; 0 1
139 00id 10211 . . . . . . . 8  |-  ( 0  +  0 )  =  0
140101, 139oveq12i 6662 . . . . . . 7  |-  ( ( 2  x.  3 )  +  ( 0  +  0 ) )  =  ( 6  +  0 )
14161addid1i 10223 . . . . . . 7  |-  ( 6  +  0 )  =  6
142140, 141eqtri 2644 . . . . . 6  |-  ( ( 2  x.  3 )  +  ( 0  +  0 ) )  =  6
14357mul01i 10226 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
144143oveq1i 6660 . . . . . . 7  |-  ( ( 2  x.  0 )  +  1 )  =  ( 0  +  1 )
145 0p1e1 11132 . . . . . . 7  |-  ( 0  +  1 )  =  1
146144, 145, 1383eqtri 2648 . . . . . 6  |-  ( ( 2  x.  0 )  +  1 )  = ; 0
1
14729, 39, 39, 9, 137, 138, 3, 9, 39, 142, 146decma2c 11568 . . . . 5  |-  ( ( 2  x. ; 3 0 )  +  1 )  = ; 6 1
1483, 40, 2, 136, 3, 9, 147, 63decmul2c 11589 . . . 4  |-  ( 2  x. ;; 3 0 6 )  = ;; 6 1 2
149 eqid 2622 . . . . . 6  |- ; 1 8  = ; 1 8
15010, 30, 55, 112decsuc 11535 . . . . . 6  |-  (;; 1 2 4  +  1 )  = ;; 1 2 5
151 8cn 11106 . . . . . . 7  |-  8  e.  CC
152151, 16, 18addcomli 10228 . . . . . 6  |-  ( 1  +  8 )  =  9
15344, 9, 9, 13, 107, 149, 150, 152decadd 11570 . . . . 5  |-  (;;; 1 2 4 1  + ; 1 8 )  = ;;; 1 2 5 9
154153, 17eqtr4i 2647 . . . 4  |-  (;;; 1 2 4 1  + ; 1 8 )  =  N
15534nn0cni 11304 . . . . . 6  |- ;; 3 2 4  e.  CC
156155addid2i 10224 . . . . 5  |-  ( 0  + ;; 3 2 4 )  = ;; 3 2 4
15768oveq1i 6660 . . . . 5  |-  ( ( 0  x.  N )  + ;; 3 2 4 )  =  ( 0  + ;; 3 2 4 )
1589, 13deccl 11512 . . . . . 6  |- ; 1 8  e.  NN0
1599, 30deccl 11512 . . . . . 6  |- ; 1 4  e.  NN0
160 eqid 2622 . . . . . . 7  |- ; 1 4  = ; 1 4
16116mulid1i 10042 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
162161, 114oveq12i 6662 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  ( 1  +  1 ) )  =  ( 1  +  2 )
163 1p2e3 11152 . . . . . . . 8  |-  ( 1  +  2 )  =  3
164162, 163eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  1 )  +  ( 1  +  1 ) )  =  3
165151mulid1i 10042 . . . . . . . . 9  |-  ( 8  x.  1 )  =  8
166165oveq1i 6660 . . . . . . . 8  |-  ( ( 8  x.  1 )  +  4 )  =  ( 8  +  4 )
167 8p4e12 11614 . . . . . . . 8  |-  ( 8  +  4 )  = ; 1
2
168166, 167eqtri 2644 . . . . . . 7  |-  ( ( 8  x.  1 )  +  4 )  = ; 1
2
1699, 13, 9, 30, 149, 160, 9, 3, 9, 164, 168decmac 11566 . . . . . 6  |-  ( (; 1
8  x.  1 )  + ; 1 4 )  = ; 3
2
170151mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  8 )  =  8
171170oveq1i 6660 . . . . . . . 8  |-  ( ( 1  x.  8 )  +  6 )  =  ( 8  +  6 )
172 8p6e14 11616 . . . . . . . 8  |-  ( 8  +  6 )  = ; 1
4
173171, 172eqtri 2644 . . . . . . 7  |-  ( ( 1  x.  8 )  +  6 )  = ; 1
4
174 8t8e64 11662 . . . . . . 7  |-  ( 8  x.  8 )  = ; 6
4
17513, 9, 13, 149, 30, 2, 173, 174decmul1c 11587 . . . . . 6  |-  (; 1 8  x.  8 )  = ;; 1 4 4
176158, 9, 13, 149, 30, 159, 169, 175decmul2c 11589 . . . . 5  |-  (; 1 8  x. ; 1 8 )  = ;; 3 2 4
177156, 157, 1763eqtr4i 2654 . . . 4  |-  ( ( 0  x.  N )  + ;; 3 2 4 )  =  (; 1
8  x. ; 1 8 )
1781, 41, 7, 43, 34, 45, 135, 148, 154, 177mod2xnegi 15775 . . 3  |-  ( ( 2 ^;; 6 1 2 )  mod 
N )  =  (;; 3 2 4  mod 
N )
179171259lem1 15838 . . 3  |-  ( ( 2 ^; 1 7 )  mod 
N )  =  (;; 1 3 6  mod 
N )
180 eqid 2622 . . . 4  |- ;; 6 1 2  = ;; 6 1 2
181 eqid 2622 . . . 4  |- ; 1 7  = ; 1 7
182 eqid 2622 . . . . 5  |- ; 6 1  = ; 6 1
1832, 9, 114, 182decsuc 11535 . . . 4  |-  (; 6 1  +  1 )  = ; 6 2
184 7p2e9 11172 . . . . 5  |-  ( 7  +  2 )  =  9
18556, 57, 184addcomli 10228 . . . 4  |-  ( 2  +  7 )  =  9
18627, 3, 9, 35, 180, 181, 183, 185decadd 11570 . . 3  |-  (;; 6 1 2  + ; 1 7 )  = ;; 6 2 9
18729, 9deccl 11512 . . . . 5  |- ; 3 1  e.  NN0
188 eqid 2622 . . . . . . 7  |- ; 3 1  = ; 3 1
189 3p2e5 11160 . . . . . . . . 9  |-  ( 3  +  2 )  =  5
19099, 57, 189addcomli 10228 . . . . . . . 8  |-  ( 2  +  3 )  =  5
1919, 3, 29, 113, 190decaddi 11579 . . . . . . 7  |-  (; 1 2  +  3 )  = ; 1 5
192 5p1e6 11155 . . . . . . 7  |-  ( 5  +  1 )  =  6
19310, 11, 29, 9, 111, 188, 191, 192decadd 11570 . . . . . 6  |-  (;; 1 2 5  + ; 3 1 )  = ;; 1 5 6
194114oveq1i 6660 . . . . . . . . 9  |-  ( ( 1  +  1 )  +  1 )  =  ( 2  +  1 )
195194, 73eqtri 2644 . . . . . . . 8  |-  ( ( 1  +  1 )  +  1 )  =  3
196 7p5e12 11607 . . . . . . . . 9  |-  ( 7  +  5 )  = ; 1
2
19756, 92, 196addcomli 10228 . . . . . . . 8  |-  ( 5  +  7 )  = ; 1
2
1989, 11, 9, 35, 88, 181, 195, 3, 197decaddc 11572 . . . . . . 7  |-  (; 1 5  + ; 1 7 )  = ; 3
2
199 eqid 2622 . . . . . . . 8  |- ; 3 4  = ; 3 4
200 7p3e10 11603 . . . . . . . . 9  |-  ( 7  +  3 )  = ; 1
0
20156, 99, 200addcomli 10228 . . . . . . . 8  |-  ( 3  +  7 )  = ; 1
0
20299mulid1i 10042 . . . . . . . . . 10  |-  ( 3  x.  1 )  =  3
20316addid1i 10223 . . . . . . . . . 10  |-  ( 1  +  0 )  =  1
204202, 203oveq12i 6662 . . . . . . . . 9  |-  ( ( 3  x.  1 )  +  ( 1  +  0 ) )  =  ( 3  +  1 )
205 3p1e4 11153 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
206204, 205eqtri 2644 . . . . . . . 8  |-  ( ( 3  x.  1 )  +  ( 1  +  0 ) )  =  4
207 4cn 11098 . . . . . . . . . . 11  |-  4  e.  CC
208207mulid1i 10042 . . . . . . . . . 10  |-  ( 4  x.  1 )  =  4
209208oveq1i 6660 . . . . . . . . 9  |-  ( ( 4  x.  1 )  +  0 )  =  ( 4  +  0 )
210207addid1i 10223 . . . . . . . . 9  |-  ( 4  +  0 )  =  4
21130dec0h 11522 . . . . . . . . 9  |-  4  = ; 0 4
212209, 210, 2113eqtri 2648 . . . . . . . 8  |-  ( ( 4  x.  1 )  +  0 )  = ; 0
4
21329, 30, 9, 39, 199, 201, 9, 30, 39, 206, 212decmac 11566 . . . . . . 7  |-  ( (; 3
4  x.  1 )  +  ( 3  +  7 ) )  = ; 4
4
2143dec0h 11522 . . . . . . . 8  |-  2  = ; 0 2
215100, 145oveq12i 6662 . . . . . . . . 9  |-  ( ( 3  x.  2 )  +  ( 0  +  1 ) )  =  ( 6  +  1 )
216 6p1e7 11156 . . . . . . . . 9  |-  ( 6  +  1 )  =  7
217215, 216eqtri 2644 . . . . . . . 8  |-  ( ( 3  x.  2 )  +  ( 0  +  1 ) )  =  7
218 4t2e8 11181 . . . . . . . . . 10  |-  ( 4  x.  2 )  =  8
219218oveq1i 6660 . . . . . . . . 9  |-  ( ( 4  x.  2 )  +  2 )  =  ( 8  +  2 )
220 8p2e10 11610 . . . . . . . . 9  |-  ( 8  +  2 )  = ; 1
0
221219, 220eqtri 2644 . . . . . . . 8  |-  ( ( 4  x.  2 )  +  2 )  = ; 1
0
22229, 30, 39, 3, 199, 214, 3, 39, 9, 217, 221decmac 11566 . . . . . . 7  |-  ( (; 3
4  x.  2 )  +  2 )  = ; 7
0
2239, 3, 29, 3, 113, 198, 31, 39, 35, 213, 222decma2c 11568 . . . . . 6  |-  ( (; 3
4  x. ; 1 2 )  +  (; 1 5  + ; 1 7 ) )  = ;; 4 4 0
224 5t3e15 11635 . . . . . . . . 9  |-  ( 5  x.  3 )  = ; 1
5
22592, 99, 224mulcomli 10047 . . . . . . . 8  |-  ( 3  x.  5 )  = ; 1
5
226 5p2e7 11165 . . . . . . . 8  |-  ( 5  +  2 )  =  7
2279, 11, 3, 225, 226decaddi 11579 . . . . . . 7  |-  ( ( 3  x.  5 )  +  2 )  = ; 1
7
228 5t4e20 11637 . . . . . . . . 9  |-  ( 5  x.  4 )  = ; 2
0
22992, 207, 228mulcomli 10047 . . . . . . . 8  |-  ( 4  x.  5 )  = ; 2
0
23061addid2i 10224 . . . . . . . 8  |-  ( 0  +  6 )  =  6
2313, 39, 2, 229, 230decaddi 11579 . . . . . . 7  |-  ( ( 4  x.  5 )  +  6 )  = ; 2
6
23229, 30, 2, 199, 11, 2, 3, 227, 231decrmac 11577 . . . . . 6  |-  ( (; 3
4  x.  5 )  +  6 )  = ;; 1 7 6
23310, 11, 46, 2, 111, 193, 31, 2, 36, 223, 232decma2c 11568 . . . . 5  |-  ( (; 3
4  x. ;; 1 2 5 )  +  (;; 1 2 5  + ; 3 1 ) )  = ;;; 4 4 0 6
234 9cn 11108 . . . . . . . 8  |-  9  e.  CC
235 9t3e27 11664 . . . . . . . 8  |-  ( 9  x.  3 )  = ; 2
7
236234, 99, 235mulcomli 10047 . . . . . . 7  |-  ( 3  x.  9 )  = ; 2
7
237 7p4e11 11605 . . . . . . 7  |-  ( 7  +  4 )  = ; 1
1
2383, 35, 30, 236, 73, 9, 237decaddci 11580 . . . . . 6  |-  ( ( 3  x.  9 )  +  4 )  = ; 3
1
239 9t4e36 11665 . . . . . . . 8  |-  ( 9  x.  4 )  = ; 3
6
240234, 207, 239mulcomli 10047 . . . . . . 7  |-  ( 4  x.  9 )  = ; 3
6
241151, 61, 172addcomli 10228 . . . . . . 7  |-  ( 6  +  8 )  = ; 1
4
24229, 2, 13, 240, 205, 30, 241decaddci 11580 . . . . . 6  |-  ( ( 4  x.  9 )  +  8 )  = ; 4
4
24329, 30, 13, 199, 5, 30, 30, 238, 242decrmac 11577 . . . . 5  |-  ( (; 3
4  x.  9 )  +  8 )  = ;; 3 1 4
24412, 5, 12, 13, 17, 22, 31, 30, 187, 233, 243decma2c 11568 . . . 4  |-  ( (; 3
4  x.  N )  +  ( N  - 
1 ) )  = ;;;; 4 4 0 6 4
245 eqid 2622 . . . . 5  |- ;; 1 3 6  = ;; 1 3 6
2469, 5deccl 11512 . . . . . 6  |- ; 1 9  e.  NN0
247246, 30deccl 11512 . . . . 5  |- ;; 1 9 4  e.  NN0
248 eqid 2622 . . . . . 6  |- ; 1 3  = ; 1 3
249 eqid 2622 . . . . . 6  |- ;; 1 9 4  = ;; 1 9 4
2505, 35deccl 11512 . . . . . 6  |- ; 9 7  e.  NN0
2519, 9deccl 11512 . . . . . . 7  |- ; 1 1  e.  NN0
252 eqid 2622 . . . . . . 7  |- ;; 3 2 4  = ;; 3 2 4
253 eqid 2622 . . . . . . . 8  |- ; 1 9  = ; 1 9
254 eqid 2622 . . . . . . . 8  |- ; 9 7  = ; 9 7
255234, 16, 120addcomli 10228 . . . . . . . . 9  |-  ( 1  +  9 )  = ; 1
0
2569, 39, 145, 255decsuc 11535 . . . . . . . 8  |-  ( ( 1  +  9 )  +  1 )  = ; 1
1
257 9p7e16 11625 . . . . . . . 8  |-  ( 9  +  7 )  = ; 1
6
2589, 5, 5, 35, 253, 254, 256, 2, 257decaddc 11572 . . . . . . 7  |-  (; 1 9  + ; 9 7 )  = ;; 1 1 6
259 eqid 2622 . . . . . . . 8  |- ; 3 2  = ; 3 2
260 eqid 2622 . . . . . . . . 9  |- ; 1 1  = ; 1 1
2619, 9, 114, 260decsuc 11535 . . . . . . . 8  |-  (; 1 1  +  1 )  = ; 1 2
26289oveq1i 6660 . . . . . . . . 9  |-  ( ( 2  x.  1 )  +  2 )  =  ( 2  +  2 )
263262, 115, 2113eqtri 2648 . . . . . . . 8  |-  ( ( 2  x.  1 )  +  2 )  = ; 0
4
26429, 3, 9, 3, 259, 261, 9, 30, 39, 206, 263decmac 11566 . . . . . . 7  |-  ( (; 3
2  x.  1 )  +  (; 1 1  +  1 ) )  = ; 4 4
265208oveq1i 6660 . . . . . . . 8  |-  ( ( 4  x.  1 )  +  6 )  =  ( 4  +  6 )
266 6p4e10 11598 . . . . . . . . 9  |-  ( 6  +  4 )  = ; 1
0
26761, 207, 266addcomli 10228 . . . . . . . 8  |-  ( 4  +  6 )  = ; 1
0
268265, 267eqtri 2644 . . . . . . 7  |-  ( ( 4  x.  1 )  +  6 )  = ; 1
0
26933, 30, 251, 2, 252, 258, 9, 39, 9, 264, 268decmac 11566 . . . . . 6  |-  ( (;; 3 2 4  x.  1 )  +  (; 1
9  + ; 9 7 ) )  = ;; 4 4 0
270145, 138eqtri 2644 . . . . . . . 8  |-  ( 0  +  1 )  = ; 0
1
271 3t3e9 11180 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
272271, 139oveq12i 6662 . . . . . . . . 9  |-  ( ( 3  x.  3 )  +  ( 0  +  0 ) )  =  ( 9  +  0 )
273234addid1i 10223 . . . . . . . . 9  |-  ( 9  +  0 )  =  9
274272, 273eqtri 2644 . . . . . . . 8  |-  ( ( 3  x.  3 )  +  ( 0  +  0 ) )  =  9
275101oveq1i 6660 . . . . . . . . 9  |-  ( ( 2  x.  3 )  +  1 )  =  ( 6  +  1 )
27635dec0h 11522 . . . . . . . . 9  |-  7  = ; 0 7
277275, 216, 2763eqtri 2648 . . . . . . . 8  |-  ( ( 2  x.  3 )  +  1 )  = ; 0
7
27829, 3, 39, 9, 259, 270, 29, 35, 39, 274, 277decmac 11566 . . . . . . 7  |-  ( (; 3
2  x.  3 )  +  ( 0  +  1 ) )  = ; 9
7
279 4t3e12 11632 . . . . . . . 8  |-  ( 4  x.  3 )  = ; 1
2
280 4p2e6 11162 . . . . . . . . 9  |-  ( 4  +  2 )  =  6
281207, 57, 280addcomli 10228 . . . . . . . 8  |-  ( 2  +  4 )  =  6
2829, 3, 30, 279, 281decaddi 11579 . . . . . . 7  |-  ( ( 4  x.  3 )  +  4 )  = ; 1
6
28333, 30, 39, 30, 252, 211, 29, 2, 9, 278, 282decmac 11566 . . . . . 6  |-  ( (;; 3 2 4  x.  3 )  +  4 )  = ;; 9 7 6
2849, 29, 246, 30, 248, 249, 34, 2, 250, 269, 283decma2c 11568 . . . . 5  |-  ( (;; 3 2 4  x. ; 1
3 )  + ;; 1 9 4 )  = ;;; 4 4 0 6
285 6t3e18 11642 . . . . . . . . 9  |-  ( 6  x.  3 )  = ; 1
8
28661, 99, 285mulcomli 10047 . . . . . . . 8  |-  ( 3  x.  6 )  = ; 1
8
2879, 13, 18, 286decsuc 11535 . . . . . . 7  |-  ( ( 3  x.  6 )  +  1 )  = ; 1
9
2889, 3, 3, 63, 115decaddi 11579 . . . . . . 7  |-  ( ( 2  x.  6 )  +  2 )  = ; 1
4
28929, 3, 3, 259, 2, 30, 9, 287, 288decrmac 11577 . . . . . 6  |-  ( (; 3
2  x.  6 )  +  2 )  = ;; 1 9 4
290 6t4e24 11643 . . . . . . 7  |-  ( 6  x.  4 )  = ; 2
4
29161, 207, 290mulcomli 10047 . . . . . 6  |-  ( 4  x.  6 )  = ; 2
4
2922, 33, 30, 252, 30, 3, 289, 291decmul1c 11587 . . . . 5  |-  (;; 3 2 4  x.  6 )  = ;;; 1 9 4 4
29334, 37, 2, 245, 30, 247, 284, 292decmul2c 11589 . . . 4  |-  (;; 3 2 4  x. ;; 1 3 6 )  = ;;;; 4 4 0 6 4
294244, 293eqtr4i 2647 . . 3  |-  ( (; 3
4  x.  N )  +  ( N  - 
1 ) )  =  (;; 3 2 4  x. ;; 1 3 6 )
29526, 1, 28, 32, 34, 23, 36, 38, 178, 179, 186, 294modxai 15772 . 2  |-  ( ( 2 ^;; 6 2 9 )  mod 
N )  =  ( ( N  -  1 )  mod  N )
296 eqid 2622 . . . 4  |- ;; 6 2 9  = ;; 6 2 9
297 eqid 2622 . . . . 5  |- ; 6 2  = ; 6 2
298139oveq2i 6661 . . . . . 6  |-  ( ( 2  x.  6 )  +  ( 0  +  0 ) )  =  ( ( 2  x.  6 )  +  0 )
29963oveq1i 6660 . . . . . 6  |-  ( ( 2  x.  6 )  +  0 )  =  (; 1 2  +  0 )
30010nn0cni 11304 . . . . . . 7  |- ; 1 2  e.  CC
301300addid1i 10223 . . . . . 6  |-  (; 1 2  +  0 )  = ; 1 2
302298, 299, 3013eqtri 2648 . . . . 5  |-  ( ( 2  x.  6 )  +  ( 0  +  0 ) )  = ; 1
2
30311dec0h 11522 . . . . . 6  |-  5  = ; 0 5
30481, 55, 3033eqtri 2648 . . . . 5  |-  ( ( 2  x.  2 )  +  1 )  = ; 0
5
3052, 3, 39, 9, 297, 138, 3, 11, 39, 302, 304decma2c 11568 . . . 4  |-  ( ( 2  x. ; 6 2 )  +  1 )  = ;; 1 2 5
306 9t2e18 11663 . . . . 5  |-  ( 9  x.  2 )  = ; 1
8
307234, 57, 306mulcomli 10047 . . . 4  |-  ( 2  x.  9 )  = ; 1
8
3083, 4, 5, 296, 13, 9, 305, 307decmul2c 11589 . . 3  |-  ( 2  x. ;; 6 2 9 )  = ;;; 1 2 5 8
309308, 22eqtr4i 2647 . 2  |-  ( 2  x. ;; 6 2 9 )  =  ( N  -  1 )
310 npcan 10290 . . 3  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
31167, 16, 310mp2an 708 . 2  |-  ( ( N  -  1 )  +  1 )  =  N
31268oveq1i 6660 . . 3  |-  ( ( 0  x.  N )  +  1 )  =  ( 0  +  1 )
313145, 312, 1613eqtr4i 2654 . 2  |-  ( ( 0  x.  N )  +  1 )  =  ( 1  x.  1 )
3141, 6, 7, 8, 9, 23, 295, 309, 311, 313mod2xnegi 15775 1  |-  ( ( 2 ^ ( N  -  1 ) )  mod  N )  =  ( 1  mod  N
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   8c8 11076   9c9 11077   NN0cn0 11292  ;cdc 11493    mod cmo 12668   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861
This theorem is referenced by:  1259prm  15843
  Copyright terms: Public domain W3C validator