Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750lemd Structured version   Visualization version   Unicode version

Theorem hgt750lemd 30726
Description: An upper bound to the summatory function of the von Mangoldt function on non-primes. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750lemc.n  |-  ( ph  ->  N  e.  NN )
hgt750lemd.0  |-  ( ph  ->  (; 1 0 ^; 2 7 )  <_  N )
Assertion
Ref Expression
hgt750lemd  |-  ( ph  -> 
sum_ i  e.  ( ( ( 1 ... N )  \  Prime )  u.  { 2 } ) (Λ `  i
)  <  ( (
1 period_ 4_ 2_ 6
3 )  x.  ( sqr `  N ) ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem hgt750lemd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
2 diffi 8192 . . . . 5  |-  ( ( 1 ... N )  e.  Fin  ->  (
( 1 ... N
)  \  Prime )  e. 
Fin )
31, 2syl 17 . . . 4  |-  ( ph  ->  ( ( 1 ... N )  \  Prime )  e.  Fin )
4 vmaf 24845 . . . . . 6  |- Λ : NN --> RR
54a1i 11 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  \  Prime ) )  -> Λ : NN --> RR )
6 fz1ssnn 12372 . . . . . . . 8  |-  ( 1 ... N )  C_  NN
76a1i 11 . . . . . . 7  |-  ( ph  ->  ( 1 ... N
)  C_  NN )
87ssdifssd 3748 . . . . . 6  |-  ( ph  ->  ( ( 1 ... N )  \  Prime ) 
C_  NN )
98sselda 3603 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  \  Prime ) )  ->  i  e.  NN )
105, 9ffvelrnd 6360 . . . 4  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  \  Prime ) )  ->  (Λ `  i
)  e.  RR )
113, 10fsumrecl 14465 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i )  e.  RR )
12 2rp 11837 . . . . 5  |-  2  e.  RR+
1312a1i 11 . . . 4  |-  ( ph  ->  2  e.  RR+ )
1413relogcld 24369 . . 3  |-  ( ph  ->  ( log `  2
)  e.  RR )
15 1nn0 11308 . . . . . 6  |-  1  e.  NN0
16 4re 11097 . . . . . . . 8  |-  4  e.  RR
17 2re 11090 . . . . . . . . . 10  |-  2  e.  RR
18 6re 11101 . . . . . . . . . . . 12  |-  6  e.  RR
1918, 17pm3.2i 471 . . . . . . . . . . 11  |-  ( 6  e.  RR  /\  2  e.  RR )
20 dp2cl 29587 . . . . . . . . . . 11  |-  ( ( 6  e.  RR  /\  2  e.  RR )  -> _ 6
2  e.  RR )
2119, 20ax-mp 5 . . . . . . . . . 10  |- _ 6 2  e.  RR
2217, 21pm3.2i 471 . . . . . . . . 9  |-  ( 2  e.  RR  /\ _ 6 2  e.  RR )
23 dp2cl 29587 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\ _ 6 2  e.  RR )  -> _ 2_ 6 2  e.  RR )
2422, 23ax-mp 5 . . . . . . . 8  |- _ 2_ 6 2  e.  RR
2516, 24pm3.2i 471 . . . . . . 7  |-  ( 4  e.  RR  /\ _ 2_ 6 2  e.  RR )
26 dp2cl 29587 . . . . . . 7  |-  ( ( 4  e.  RR  /\ _ 2_ 6 2  e.  RR )  -> _ 4_ 2_ 6
2  e.  RR )
2725, 26ax-mp 5 . . . . . 6  |- _ 4_ 2_ 6 2  e.  RR
28 dpcl 29598 . . . . . 6  |-  ( ( 1  e.  NN0  /\ _ 4_ 2_ 6 2  e.  RR )  ->  ( 1 period_ 4_ 2_ 6 2 )  e.  RR )
2915, 27, 28mp2an 708 . . . . 5  |-  ( 1
period_ 4_ 2_ 6 2 )  e.  RR
3029a1i 11 . . . 4  |-  ( ph  ->  ( 1 period_ 4_ 2_ 6 2 )  e.  RR )
31 hgt750lemc.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
3231nnred 11035 . . . . 5  |-  ( ph  ->  N  e.  RR )
3331nnrpd 11870 . . . . . 6  |-  ( ph  ->  N  e.  RR+ )
3433rpge0d 11876 . . . . 5  |-  ( ph  ->  0  <_  N )
3532, 34resqrtcld 14156 . . . 4  |-  ( ph  ->  ( sqr `  N
)  e.  RR )
3630, 35remulcld 10070 . . 3  |-  ( ph  ->  ( ( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  N
) )  e.  RR )
37 0nn0 11307 . . . . . 6  |-  0  e.  NN0
38 0re 10040 . . . . . . . 8  |-  0  e.  RR
39 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
4038, 39pm3.2i 471 . . . . . . . . . . 11  |-  ( 0  e.  RR  /\  1  e.  RR )
41 dp2cl 29587 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  1  e.  RR )  -> _ 0
1  e.  RR )
4240, 41ax-mp 5 . . . . . . . . . 10  |- _ 0 1  e.  RR
4338, 42pm3.2i 471 . . . . . . . . 9  |-  ( 0  e.  RR  /\ _ 0 1  e.  RR )
44 dp2cl 29587 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\ _ 0 1  e.  RR )  -> _ 0_ 0 1  e.  RR )
4543, 44ax-mp 5 . . . . . . . 8  |- _ 0_ 0 1  e.  RR
4638, 45pm3.2i 471 . . . . . . 7  |-  ( 0  e.  RR  /\ _ 0_ 0 1  e.  RR )
47 dp2cl 29587 . . . . . . 7  |-  ( ( 0  e.  RR  /\ _ 0_ 0 1  e.  RR )  -> _ 0_ 0_ 0
1  e.  RR )
4846, 47ax-mp 5 . . . . . 6  |- _ 0_ 0_ 0 1  e.  RR
49 dpcl 29598 . . . . . 6  |-  ( ( 0  e.  NN0  /\ _ 0_ 0_ 0 1  e.  RR )  ->  ( 0 period_ 0_ 0_ 0 1 )  e.  RR )
5037, 48, 49mp2an 708 . . . . 5  |-  ( 0
period_ 0_ 0_ 0 1 )  e.  RR
5150a1i 11 . . . 4  |-  ( ph  ->  ( 0 period_ 0_ 0_ 0 1 )  e.  RR )
5251, 35remulcld 10070 . . 3  |-  ( ph  ->  ( ( 0 period_ 0_ 0_ 0 1 )  x.  ( sqr `  N
) )  e.  RR )
5331nnzd 11481 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
54 chpvalz 30706 . . . . . . 7  |-  ( N  e.  ZZ  ->  (ψ `  N )  =  sum_ i  e.  ( 1 ... N ) (Λ `  i ) )
5553, 54syl 17 . . . . . 6  |-  ( ph  ->  (ψ `  N )  =  sum_ i  e.  ( 1 ... N ) (Λ `  i )
)
56 chtvalz 30707 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( theta `  N )  = 
sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) ( log `  i ) )
5753, 56syl 17 . . . . . . 7  |-  ( ph  ->  ( theta `  N )  =  sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) ( log `  i ) )
58 inss2 3834 . . . . . . . . . . 11  |-  ( ( 1 ... N )  i^i  Prime )  C_  Prime
5958a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1 ... N )  i^i  Prime ) 
C_  Prime )
6059sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  ->  i  e.  Prime )
61 vmaprm 24843 . . . . . . . . 9  |-  ( i  e.  Prime  ->  (Λ `  i
)  =  ( log `  i ) )
6260, 61syl 17 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  ->  (Λ `  i
)  =  ( log `  i ) )
6362sumeq2dv 14433 . . . . . . 7  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i )  =  sum_ i  e.  ( (
1 ... N )  i^i 
Prime ) ( log `  i
) )
6457, 63eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( theta `  N )  =  sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i ) )
6555, 64oveq12d 6668 . . . . 5  |-  ( ph  ->  ( (ψ `  N
)  -  ( theta `  N ) )  =  ( sum_ i  e.  ( 1 ... N ) (Λ `  i )  -  sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i ) ) )
6610recnd 10068 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  \  Prime ) )  ->  (Λ `  i
)  e.  CC )
673, 66fsumcl 14464 . . . . . 6  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i )  e.  CC )
68 infi 8184 . . . . . . . 8  |-  ( ( 1 ... N )  e.  Fin  ->  (
( 1 ... N
)  i^i  Prime )  e. 
Fin )
691, 68syl 17 . . . . . . 7  |-  ( ph  ->  ( ( 1 ... N )  i^i  Prime )  e.  Fin )
704a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  -> Λ : NN --> RR )
71 inss1 3833 . . . . . . . . . . . 12  |-  ( ( 1 ... N )  i^i  Prime )  C_  (
1 ... N )
7271, 6sstri 3612 . . . . . . . . . . 11  |-  ( ( 1 ... N )  i^i  Prime )  C_  NN
7372a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1 ... N )  i^i  Prime ) 
C_  NN )
7473sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  ->  i  e.  NN )
7570, 74ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  ->  (Λ `  i
)  e.  RR )
7675recnd 10068 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( 1 ... N )  i^i  Prime ) )  ->  (Λ `  i
)  e.  CC )
7769, 76fsumcl 14464 . . . . . 6  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i )  e.  CC )
78 inindif 29353 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  i^i  Prime )  i^i  ( ( 1 ... N )  \  Prime ) )  =  (/)
7978a1i 11 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1 ... N )  i^i 
Prime )  i^i  (
( 1 ... N
)  \  Prime ) )  =  (/) )
80 inundif 4046 . . . . . . . . . 10  |-  ( ( ( 1 ... N
)  i^i  Prime )  u.  ( ( 1 ... N )  \  Prime ) )  =  ( 1 ... N )
8180eqcomi 2631 . . . . . . . . 9  |-  ( 1 ... N )  =  ( ( ( 1 ... N )  i^i 
Prime )  u.  (
( 1 ... N
)  \  Prime ) )
8281a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 1 ... N
)  =  ( ( ( 1 ... N
)  i^i  Prime )  u.  ( ( 1 ... N )  \  Prime ) ) )
834a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  -> Λ : NN --> RR )
847sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  i  e.  NN )
8583, 84ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  (Λ `  i )  e.  RR )
8685recnd 10068 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  (Λ `  i )  e.  CC )
8779, 82, 1, 86fsumsplit 14471 . . . . . . 7  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) (Λ `  i )  =  ( sum_ i  e.  ( ( 1 ... N )  i^i  Prime ) (Λ `  i )  +  sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i ) ) )
8877, 67, 87comraddd 10250 . . . . . 6  |-  ( ph  -> 
sum_ i  e.  ( 1 ... N ) (Λ `  i )  =  ( sum_ i  e.  ( ( 1 ... N )  \  Prime ) (Λ `  i )  +  sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i ) ) )
8967, 77, 88mvrraddd 10445 . . . . 5  |-  ( ph  ->  ( sum_ i  e.  ( 1 ... N ) (Λ `  i )  -  sum_ i  e.  ( ( 1 ... N
)  i^i  Prime ) (Λ `  i ) )  = 
sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i ) )
9065, 89eqtr2d 2657 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i )  =  ( (ψ `  N )  -  ( theta `  N
) ) )
91 fveq2 6191 . . . . . . 7  |-  ( x  =  N  ->  (ψ `  x )  =  (ψ `  N ) )
92 fveq2 6191 . . . . . . 7  |-  ( x  =  N  ->  ( theta `  x )  =  ( theta `  N )
)
9391, 92oveq12d 6668 . . . . . 6  |-  ( x  =  N  ->  (
(ψ `  x )  -  ( theta `  x
) )  =  ( (ψ `  N )  -  ( theta `  N
) ) )
94 fveq2 6191 . . . . . . 7  |-  ( x  =  N  ->  ( sqr `  x )  =  ( sqr `  N
) )
9594oveq2d 6666 . . . . . 6  |-  ( x  =  N  ->  (
( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  x ) )  =  ( ( 1
period_ 4_ 2_ 6 2 )  x.  ( sqr `  N ) ) )
9693, 95breq12d 4666 . . . . 5  |-  ( x  =  N  ->  (
( (ψ `  x
)  -  ( theta `  x ) )  < 
( ( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  x
) )  <->  ( (ψ `  N )  -  ( theta `  N ) )  <  ( ( 1
period_ 4_ 2_ 6 2 )  x.  ( sqr `  N ) ) ) )
97 ax-ros336 30724 . . . . . 6  |-  A. x  e.  RR+  ( (ψ `  x )  -  ( theta `  x ) )  <  ( ( 1
period_ 4_ 2_ 6 2 )  x.  ( sqr `  x ) )
9897a1i 11 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  ( (ψ `  x )  -  ( theta `  x
) )  <  (
( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  x ) ) )
9996, 98, 33rspcdva 3316 . . . 4  |-  ( ph  ->  ( (ψ `  N
)  -  ( theta `  N ) )  < 
( ( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  N
) ) )
10090, 99eqbrtrd 4675 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i )  <  (
( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  N ) ) )
10139a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR )
102 log2le1 24677 . . . . 5  |-  ( log `  2 )  <  1
103102a1i 11 . . . 4  |-  ( ph  ->  ( log `  2
)  <  1 )
104 10nn0 11516 . . . . . . . . 9  |- ; 1 0  e.  NN0
105 7nn0 11314 . . . . . . . . 9  |-  7  e.  NN0
106104, 105nn0expcli 12886 . . . . . . . 8  |-  (; 1 0 ^ 7 )  e.  NN0
107106nn0rei 11303 . . . . . . 7  |-  (; 1 0 ^ 7 )  e.  RR
108107a1i 11 . . . . . 6  |-  ( ph  ->  (; 1 0 ^ 7 )  e.  RR )
10951, 108remulcld 10070 . . . . 5  |-  ( ph  ->  ( ( 0 period_ 0_ 0_ 0 1 )  x.  (; 1 0 ^ 7 ) )  e.  RR )
110104nn0rei 11303 . . . . . . . . . . 11  |- ; 1 0  e.  RR
111 0z 11388 . . . . . . . . . . 11  |-  0  e.  ZZ
112 3z 11410 . . . . . . . . . . 11  |-  3  e.  ZZ
113110, 111, 1123pm3.2i 1239 . . . . . . . . . 10  |-  (; 1 0  e.  RR  /\  0  e.  ZZ  /\  3  e.  ZZ )
114 1lt10 11681 . . . . . . . . . . 11  |-  1  < ; 1
0
115 3pos 11114 . . . . . . . . . . 11  |-  0  <  3
116114, 115pm3.2i 471 . . . . . . . . . 10  |-  ( 1  < ; 1 0  /\  0  <  3 )
117 ltexp2a 12912 . . . . . . . . . 10  |-  ( ( (; 1 0  e.  RR  /\  0  e.  ZZ  /\  3  e.  ZZ )  /\  ( 1  < ; 1 0  /\  0  <  3 ) )  -> 
(; 1 0 ^ 0 )  <  (; 1 0 ^ 3 ) )
118113, 116, 117mp2an 708 . . . . . . . . 9  |-  (; 1 0 ^ 0 )  <  (; 1 0 ^ 3 )
119104numexp0 15780 . . . . . . . . . 10  |-  (; 1 0 ^ 0 )  =  1
120119eqcomi 2631 . . . . . . . . 9  |-  1  =  (; 1 0 ^ 0 )
121110recni 10052 . . . . . . . . . . 11  |- ; 1 0  e.  CC
122 10pos 11515 . . . . . . . . . . . 12  |-  0  < ; 1
0
12338, 122gtneii 10149 . . . . . . . . . . 11  |- ; 1 0  =/=  0
124 4z 11411 . . . . . . . . . . 11  |-  4  e.  ZZ
125 expm1 12910 . . . . . . . . . . 11  |-  ( (; 1
0  e.  CC  /\ ; 1 0  =/=  0  /\  4  e.  ZZ )  ->  (; 1 0 ^ ( 4  -  1 ) )  =  ( (; 1 0 ^ 4 )  / ; 1 0 ) )
126121, 123, 124, 125mp3an 1424 . . . . . . . . . 10  |-  (; 1 0 ^ (
4  -  1 ) )  =  ( (; 1
0 ^ 4 )  / ; 1 0 )
127 4m1e3 11138 . . . . . . . . . . 11  |-  ( 4  -  1 )  =  3
128127oveq2i 6661 . . . . . . . . . 10  |-  (; 1 0 ^ (
4  -  1 ) )  =  (; 1 0 ^ 3 )
129 4nn0 11311 . . . . . . . . . . . . 13  |-  4  e.  NN0
130104, 129nn0expcli 12886 . . . . . . . . . . . 12  |-  (; 1 0 ^ 4 )  e.  NN0
131130nn0cni 11304 . . . . . . . . . . 11  |-  (; 1 0 ^ 4 )  e.  CC
132 divrec2 10702 . . . . . . . . . . 11  |-  ( ( (; 1 0 ^ 4 )  e.  CC  /\ ; 1 0  e.  CC  /\ ; 1 0  =/=  0
)  ->  ( (; 1 0 ^ 4 )  / ; 1 0 )  =  ( ( 1  / ; 1 0 )  x.  (; 1 0 ^ 4 ) ) )
133131, 121, 123, 132mp3an 1424 . . . . . . . . . 10  |-  ( (; 1
0 ^ 4 )  / ; 1 0 )  =  ( ( 1  / ; 1 0 )  x.  (; 1 0 ^ 4 ) )
134126, 128, 1333eqtr3ri 2653 . . . . . . . . 9  |-  ( ( 1  / ; 1 0 )  x.  (; 1 0 ^ 4 ) )  =  (; 1
0 ^ 3 )
135118, 120, 1343brtr4i 4683 . . . . . . . 8  |-  1  <  ( ( 1  / ; 1 0 )  x.  (; 1 0 ^ 4 ) )
136 1rp 11836 . . . . . . . . . 10  |-  1  e.  RR+
137136dp0h 29610 . . . . . . . . 9  |-  ( 0
period 1 )  =  ( 1  / ; 1 0 )
138137oveq1i 6660 . . . . . . . 8  |-  ( ( 0 period 1 )  x.  (; 1 0 ^ 4 ) )  =  ( ( 1  / ; 1 0 )  x.  (; 1 0 ^ 4 ) )
139135, 138breqtrri 4680 . . . . . . 7  |-  1  <  ( ( 0 period
1 )  x.  (; 1 0 ^ 4 ) )
140139a1i 11 . . . . . 6  |-  ( ph  ->  1  <  ( ( 0 period 1 )  x.  (; 1 0 ^ 4 ) ) )
141 4p1e5 11154 . . . . . . . 8  |-  ( 4  +  1 )  =  5
142 5nn0 11312 . . . . . . . . 9  |-  5  e.  NN0
143142nn0zi 11402 . . . . . . . 8  |-  5  e.  ZZ
14437, 136, 141, 124, 143dpexpp1 29616 . . . . . . 7  |-  ( ( 0 period 1 )  x.  (; 1 0 ^ 4 ) )  =  ( ( 0 period_ 0 1 )  x.  (; 1 0 ^ 5 ) )
14537, 136rpdp2cl 29589 . . . . . . . 8  |- _ 0 1  e.  RR+
146 5p1e6 11155 . . . . . . . 8  |-  ( 5  +  1 )  =  6
147 6nn0 11313 . . . . . . . . 9  |-  6  e.  NN0
148147nn0zi 11402 . . . . . . . 8  |-  6  e.  ZZ
14937, 145, 146, 143, 148dpexpp1 29616 . . . . . . 7  |-  ( ( 0 period_ 0 1 )  x.  (; 1 0 ^ 5 ) )  =  ( ( 0 period_ 0_ 0 1 )  x.  (; 1 0 ^ 6 ) )
15037, 145rpdp2cl 29589 . . . . . . . 8  |- _ 0_ 0 1  e.  RR+
151 6p1e7 11156 . . . . . . . 8  |-  ( 6  +  1 )  =  7
152105nn0zi 11402 . . . . . . . 8  |-  7  e.  ZZ
15337, 150, 151, 148, 152dpexpp1 29616 . . . . . . 7  |-  ( ( 0 period_ 0_ 0 1 )  x.  (; 1 0 ^ 6 ) )  =  ( ( 0
period_ 0_ 0_ 0 1 )  x.  (; 1 0 ^ 7 ) )
154144, 149, 1533eqtrri 2649 . . . . . 6  |-  ( ( 0 period_ 0_ 0_ 0
1 )  x.  (; 1 0 ^ 7 ) )  =  ( ( 0
period 1 )  x.  (; 1 0 ^ 4 ) )
155140, 154syl6breqr 4695 . . . . 5  |-  ( ph  ->  1  <  ( ( 0 period_ 0_ 0_ 0
1 )  x.  (; 1 0 ^ 7 ) ) )
15637, 150rpdp2cl 29589 . . . . . . . 8  |- _ 0_ 0_ 0 1  e.  RR+
15737, 156rpdpcl 29611 . . . . . . 7  |-  ( 0
period_ 0_ 0_ 0 1 )  e.  RR+
158157a1i 11 . . . . . 6  |-  ( ph  ->  ( 0 period_ 0_ 0_ 0 1 )  e.  RR+ )
159 2nn0 11309 . . . . . . . . . . . 12  |-  2  e.  NN0
160159, 105deccl 11512 . . . . . . . . . . 11  |- ; 2 7  e.  NN0
161104, 160nn0expcli 12886 . . . . . . . . . 10  |-  (; 1 0 ^; 2 7 )  e. 
NN0
162161nn0rei 11303 . . . . . . . . 9  |-  (; 1 0 ^; 2 7 )  e.  RR
163162a1i 11 . . . . . . . 8  |-  ( ph  ->  (; 1 0 ^; 2 7 )  e.  RR )
164161nn0ge0i 11320 . . . . . . . . 9  |-  0  <_  (; 1 0 ^; 2 7 )
165164a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <_  (; 1 0 ^; 2 7 ) )
166163, 165resqrtcld 14156 . . . . . . 7  |-  ( ph  ->  ( sqr `  (; 1 0 ^; 2 7 ) )  e.  RR )
167 expmul 12905 . . . . . . . . . . . . 13  |-  ( (; 1
0  e.  CC  /\  7  e.  NN0  /\  2  e.  NN0 )  ->  (; 1 0 ^ ( 7  x.  2 ) )  =  ( (; 1 0 ^ 7 ) ^ 2 ) )
168121, 105, 159, 167mp3an 1424 . . . . . . . . . . . 12  |-  (; 1 0 ^ (
7  x.  2 ) )  =  ( (; 1
0 ^ 7 ) ^ 2 )
169 7t2e14 11648 . . . . . . . . . . . . 13  |-  ( 7  x.  2 )  = ; 1
4
170169oveq2i 6661 . . . . . . . . . . . 12  |-  (; 1 0 ^ (
7  x.  2 ) )  =  (; 1 0 ^; 1 4 )
171168, 170eqtr3i 2646 . . . . . . . . . . 11  |-  ( (; 1
0 ^ 7 ) ^ 2 )  =  (; 1 0 ^; 1 4 )
172171fveq2i 6194 . . . . . . . . . 10  |-  ( sqr `  ( (; 1 0 ^ 7 ) ^ 2 ) )  =  ( sqr `  (; 1 0 ^; 1 4 ) )
173 expgt0 12893 . . . . . . . . . . . . 13  |-  ( (; 1
0  e.  RR  /\  7  e.  ZZ  /\  0  < ; 1
0 )  ->  0  <  (; 1 0 ^ 7 ) )
174110, 152, 122, 173mp3an 1424 . . . . . . . . . . . 12  |-  0  <  (; 1 0 ^ 7 )
17538, 107, 174ltleii 10160 . . . . . . . . . . 11  |-  0  <_  (; 1 0 ^ 7 )
176 sqrtsq 14010 . . . . . . . . . . 11  |-  ( ( (; 1 0 ^ 7 )  e.  RR  /\  0  <_  (; 1 0 ^ 7 ) )  ->  ( sqr `  ( (; 1 0 ^ 7 ) ^ 2 ) )  =  (; 1 0 ^ 7 ) )
177107, 175, 176mp2an 708 . . . . . . . . . 10  |-  ( sqr `  ( (; 1 0 ^ 7 ) ^ 2 ) )  =  (; 1 0 ^ 7 )
178172, 177eqtr3i 2646 . . . . . . . . 9  |-  ( sqr `  (; 1 0 ^; 1 4 ) )  =  (; 1 0 ^ 7 )
17915, 129deccl 11512 . . . . . . . . . . . . 13  |- ; 1 4  e.  NN0
180179nn0zi 11402 . . . . . . . . . . . 12  |- ; 1 4  e.  ZZ
181160nn0zi 11402 . . . . . . . . . . . 12  |- ; 2 7  e.  ZZ
182110, 180, 1813pm3.2i 1239 . . . . . . . . . . 11  |-  (; 1 0  e.  RR  /\ ; 1
4  e.  ZZ  /\ ; 2 7  e.  ZZ )
183 4lt10 11678 . . . . . . . . . . . . 13  |-  4  < ; 1
0
184 1lt2 11194 . . . . . . . . . . . . 13  |-  1  <  2
18515, 159, 129, 105, 183, 184decltc 11532 . . . . . . . . . . . 12  |- ; 1 4  < ; 2 7
186114, 185pm3.2i 471 . . . . . . . . . . 11  |-  ( 1  < ; 1 0  /\ ; 1 4  < ; 2 7 )
187 ltexp2a 12912 . . . . . . . . . . 11  |-  ( ( (; 1 0  e.  RR  /\ ; 1
4  e.  ZZ  /\ ; 2 7  e.  ZZ )  /\  ( 1  < ; 1 0  /\ ; 1 4  < ; 2 7 ) )  ->  (; 1 0 ^; 1 4 )  < 
(; 1 0 ^; 2 7 ) )
188182, 186, 187mp2an 708 . . . . . . . . . 10  |-  (; 1 0 ^; 1 4 )  < 
(; 1 0 ^; 2 7 )
189104, 179nn0expcli 12886 . . . . . . . . . . . . 13  |-  (; 1 0 ^; 1 4 )  e. 
NN0
190189nn0rei 11303 . . . . . . . . . . . 12  |-  (; 1 0 ^; 1 4 )  e.  RR
191 expgt0 12893 . . . . . . . . . . . . . 14  |-  ( (; 1
0  e.  RR  /\ ; 1 4  e.  ZZ  /\  0  < ; 1
0 )  ->  0  <  (; 1 0 ^; 1 4 ) )
192110, 180, 122, 191mp3an 1424 . . . . . . . . . . . . 13  |-  0  <  (; 1 0 ^; 1 4 )
19338, 190, 192ltleii 10160 . . . . . . . . . . . 12  |-  0  <_  (; 1 0 ^; 1 4 )
194190, 193pm3.2i 471 . . . . . . . . . . 11  |-  ( (; 1
0 ^; 1 4 )  e.  RR  /\  0  <_ 
(; 1 0 ^; 1 4 ) )
195162, 164pm3.2i 471 . . . . . . . . . . 11  |-  ( (; 1
0 ^; 2 7 )  e.  RR  /\  0  <_ 
(; 1 0 ^; 2 7 ) )
196 sqrtlt 14002 . . . . . . . . . . 11  |-  ( ( ( (; 1 0 ^; 1 4 )  e.  RR  /\  0  <_ 
(; 1 0 ^; 1 4 ) )  /\  ( (; 1 0 ^; 2 7 )  e.  RR  /\  0  <_ 
(; 1 0 ^; 2 7 ) ) )  ->  ( (; 1 0 ^; 1 4 )  < 
(; 1 0 ^; 2 7 )  <->  ( sqr `  (; 1 0 ^; 1 4 ) )  <  ( sqr `  (; 1 0 ^; 2 7 ) ) ) )
197194, 195, 196mp2an 708 . . . . . . . . . 10  |-  ( (; 1
0 ^; 1 4 )  < 
(; 1 0 ^; 2 7 )  <->  ( sqr `  (; 1 0 ^; 1 4 ) )  <  ( sqr `  (; 1 0 ^; 2 7 ) ) )
198188, 197mpbi 220 . . . . . . . . 9  |-  ( sqr `  (; 1 0 ^; 1 4 ) )  <  ( sqr `  (; 1 0 ^; 2 7 ) )
199178, 198eqbrtrri 4676 . . . . . . . 8  |-  (; 1 0 ^ 7 )  <  ( sqr `  (; 1 0 ^; 2 7 ) )
200199a1i 11 . . . . . . 7  |-  ( ph  ->  (; 1 0 ^ 7 )  <  ( sqr `  (; 1 0 ^; 2 7 ) ) )
201 hgt750lemd.0 . . . . . . . 8  |-  ( ph  ->  (; 1 0 ^; 2 7 )  <_  N )
202163, 165, 32, 34sqrtled 14165 . . . . . . . 8  |-  ( ph  ->  ( (; 1 0 ^; 2 7 )  <_  N 
<->  ( sqr `  (; 1 0 ^; 2 7 ) )  <_  ( sqr `  N
) ) )
203201, 202mpbid 222 . . . . . . 7  |-  ( ph  ->  ( sqr `  (; 1 0 ^; 2 7 ) )  <_  ( sqr `  N
) )
204108, 166, 35, 200, 203ltletrd 10197 . . . . . 6  |-  ( ph  ->  (; 1 0 ^ 7 )  <  ( sqr `  N ) )
205108, 35, 158, 204ltmul2dd 11928 . . . . 5  |-  ( ph  ->  ( ( 0 period_ 0_ 0_ 0 1 )  x.  (; 1 0 ^ 7 ) )  <  (
( 0 period_ 0_ 0_ 0 1 )  x.  ( sqr `  N ) ) )
206101, 109, 52, 155, 205lttrd 10198 . . . 4  |-  ( ph  ->  1  <  ( ( 0 period_ 0_ 0_ 0
1 )  x.  ( sqr `  N ) ) )
20714, 101, 52, 103, 206lttrd 10198 . . 3  |-  ( ph  ->  ( log `  2
)  <  ( (
0 period_ 0_ 0_ 0
1 )  x.  ( sqr `  N ) ) )
20811, 14, 36, 52, 100, 207lt2addd 10650 . 2  |-  ( ph  ->  ( sum_ i  e.  ( ( 1 ... N
)  \  Prime ) (Λ `  i )  +  ( log `  2 ) )  <  ( ( ( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  N ) )  +  ( ( 0
period_ 0_ 0_ 0 1 )  x.  ( sqr `  N ) ) ) )
209 nfv 1843 . . 3  |-  F/ i
ph
210 nfcv 2764 . . 3  |-  F/_ i
( log `  2
)
211 2prm 15405 . . . 4  |-  2  e.  Prime
212211a1i 11 . . 3  |-  ( ph  ->  2  e.  Prime )
213 elndif 3734 . . . 4  |-  ( 2  e.  Prime  ->  -.  2  e.  ( ( 1 ... N )  \  Prime ) )
214212, 213syl 17 . . 3  |-  ( ph  ->  -.  2  e.  ( ( 1 ... N
)  \  Prime ) )
215 fveq2 6191 . . . 4  |-  ( i  =  2  ->  (Λ `  i )  =  (Λ `  2 ) )
216 vmaprm 24843 . . . . 5  |-  ( 2  e.  Prime  ->  (Λ `  2
)  =  ( log `  2 ) )
217211, 216ax-mp 5 . . . 4  |-  (Λ `  2
)  =  ( log `  2 )
218215, 217syl6eq 2672 . . 3  |-  ( i  =  2  ->  (Λ `  i )  =  ( log `  2 ) )
219 2cnd 11093 . . . 4  |-  ( ph  ->  2  e.  CC )
220 2ne0 11113 . . . . 5  |-  2  =/=  0
221220a1i 11 . . . 4  |-  ( ph  ->  2  =/=  0 )
222219, 221logcld 24317 . . 3  |-  ( ph  ->  ( log `  2
)  e.  CC )
223209, 210, 3, 212, 214, 66, 218, 222fsumsplitsn 14474 . 2  |-  ( ph  -> 
sum_ i  e.  ( ( ( 1 ... N )  \  Prime )  u.  { 2 } ) (Λ `  i
)  =  ( sum_ i  e.  ( (
1 ... N )  \  Prime ) (Λ `  i
)  +  ( log `  2 ) ) )
224147, 12rpdp2cl 29589 . . . . . 6  |- _ 6 2  e.  RR+
225159, 224rpdp2cl 29589 . . . . 5  |- _ 2_ 6 2  e.  RR+
226 3rp 11838 . . . . . . 7  |-  3  e.  RR+
227147, 226rpdp2cl 29589 . . . . . 6  |- _ 6 3  e.  RR+
228159, 227rpdp2cl 29589 . . . . 5  |- _ 2_ 6 3  e.  RR+
229 1p0e1 11133 . . . . 5  |-  ( 1  +  0 )  =  1
230 4cn 11098 . . . . . . 7  |-  4  e.  CC
231230addid1i 10223 . . . . . 6  |-  ( 4  +  0 )  =  4
232 2cn 11091 . . . . . . . 8  |-  2  e.  CC
233232addid1i 10223 . . . . . . 7  |-  ( 2  +  0 )  =  2
234 3nn0 11310 . . . . . . . 8  |-  3  e.  NN0
235 eqid 2622 . . . . . . . . 9  |- ; 6 2  = ; 6 2
236 eqid 2622 . . . . . . . . 9  |- ; 0 1  = ; 0 1
237 6cn 11102 . . . . . . . . . 10  |-  6  e.  CC
238237addid1i 10223 . . . . . . . . 9  |-  ( 6  +  0 )  =  6
239 2p1e3 11151 . . . . . . . . 9  |-  ( 2  +  1 )  =  3
240147, 159, 37, 15, 235, 236, 238, 239decadd 11570 . . . . . . . 8  |-  (; 6 2  + ; 0 1 )  = ; 6
3
241147, 159, 37, 15, 147, 234, 240dpadd 29619 . . . . . . 7  |-  ( ( 6 period 2 )  +  ( 0 period 1 ) )  =  ( 6
period 3 )
242147, 12, 37, 136, 147, 226, 159, 37, 233, 241dpadd2 29618 . . . . . 6  |-  ( ( 2 period_ 6 2 )  +  ( 0 period_ 0 1 ) )  =  ( 2 period_ 6 3 )
243159, 224, 37, 145, 159, 227, 129, 37, 231, 242dpadd2 29618 . . . . 5  |-  ( ( 4 period_ 2_ 6 2 )  +  ( 0 period_ 0_ 0 1 ) )  =  ( 4 period_ 2_ 6 3 )
244129, 225, 37, 150, 129, 228, 15, 37, 229, 243dpadd2 29618 . . . 4  |-  ( ( 1 period_ 4_ 2_ 6
2 )  +  ( 0 period_ 0_ 0_ 0
1 ) )  =  ( 1 period_ 4_ 2_ 6 3 )
245244oveq1i 6660 . . 3  |-  ( ( ( 1 period_ 4_ 2_ 6 2 )  +  ( 0 period_ 0_ 0_ 0
1 ) )  x.  ( sqr `  N
) )  =  ( ( 1 period_ 4_ 2_ 6 3 )  x.  ( sqr `  N ) )
24630recnd 10068 . . . 4  |-  ( ph  ->  ( 1 period_ 4_ 2_ 6 2 )  e.  CC )
24751recnd 10068 . . . 4  |-  ( ph  ->  ( 0 period_ 0_ 0_ 0 1 )  e.  CC )
24835recnd 10068 . . . 4  |-  ( ph  ->  ( sqr `  N
)  e.  CC )
249246, 247, 248adddird 10065 . . 3  |-  ( ph  ->  ( ( ( 1
period_ 4_ 2_ 6 2 )  +  ( 0
period_ 0_ 0_ 0 1 ) )  x.  ( sqr `  N ) )  =  ( ( ( 1 period_ 4_ 2_ 6
2 )  x.  ( sqr `  N ) )  +  ( ( 0
period_ 0_ 0_ 0 1 )  x.  ( sqr `  N ) ) ) )
250245, 249syl5eqr 2670 . 2  |-  ( ph  ->  ( ( 1 period_ 4_ 2_ 6 3 )  x.  ( sqr `  N
) )  =  ( ( ( 1 period_ 4_ 2_ 6 2 )  x.  ( sqr `  N
) )  +  ( ( 0 period_ 0_ 0_ 0 1 )  x.  ( sqr `  N ) ) ) )
251208, 223, 2503brtr4d 4685 1  |-  ( ph  -> 
sum_ i  e.  ( ( ( 1 ... N )  \  Prime )  u.  { 2 } ) (Λ `  i
)  <  ( (
1 period_ 4_ 2_ 6
3 )  x.  ( sqr `  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   3c3 11071   4c4 11072   5c5 11073   6c6 11074   7c7 11075   NN0cn0 11292   ZZcz 11377  ;cdc 11493   RR+crp 11832   ...cfz 12326   ^cexp 12860   sqrcsqrt 13973   sum_csu 14416   Primecprime 15385   logclog 24301   thetaccht 24817  Λcvma 24818  ψcchp 24819  _cdp2 29577   periodcdp 29595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-ros336 30724
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-atan 24594  df-cht 24823  df-vma 24824  df-chp 24825  df-dp2 29578  df-dp 29596
This theorem is referenced by:  hgt750leme  30736
  Copyright terms: Public domain W3C validator