MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   Unicode version

Theorem acndom2 8877
Description: A set smaller than one with choice sequences of length  A also has choice sequences of length 
A. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2  |-  ( X  ~<_  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )

Proof of Theorem acndom2
Dummy variables  f 
g  h  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7966 . 2  |-  ( X  ~<_  Y  ->  E. f 
f : X -1-1-> Y
)
2 simplr 792 . . . . . . . 8  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  Y  e. AC  A )
3 imassrn 5477 . . . . . . . . . . 11  |-  ( f
" ( g `  x ) )  C_  ran  f
4 simplll 798 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  f : X -1-1-> Y
)
5 f1f 6101 . . . . . . . . . . . 12  |-  ( f : X -1-1-> Y  -> 
f : X --> Y )
6 frn 6053 . . . . . . . . . . . 12  |-  ( f : X --> Y  ->  ran  f  C_  Y )
74, 5, 63syl 18 . . . . . . . . . . 11  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ran  f  C_  Y
)
83, 7syl5ss 3614 . . . . . . . . . 10  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( f " (
g `  x )
)  C_  Y )
9 elmapi 7879 . . . . . . . . . . . . . . . . . 18  |-  ( g  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  g : A --> ( ~P X  \  { (/)
} ) )
109adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
g : A --> ( ~P X  \  { (/) } ) )
1110ffvelrnda 6359 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  e.  ( ~P X  \  { (/) } ) )
1211eldifad 3586 . . . . . . . . . . . . . . 15  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  e.  ~P X
)
1312elpwid 4170 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  C_  X )
14 f1dm 6105 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-> Y  ->  dom  f  =  X
)
154, 14syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  dom  f  =  X )
1613, 15sseqtr4d 3642 . . . . . . . . . . . . 13  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  C_  dom  f )
17 sseqin2 3817 . . . . . . . . . . . . 13  |-  ( ( g `  x ) 
C_  dom  f  <->  ( dom  f  i^i  ( g `  x ) )  =  ( g `  x
) )
1816, 17sylib 208 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( dom  f  i^i  ( g `  x
) )  =  ( g `  x ) )
19 eldifsni 4320 . . . . . . . . . . . . 13  |-  ( ( g `  x )  e.  ( ~P X  \  { (/) } )  -> 
( g `  x
)  =/=  (/) )
2011, 19syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( g `  x
)  =/=  (/) )
2118, 20eqnetrd 2861 . . . . . . . . . . 11  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( dom  f  i^i  ( g `  x
) )  =/=  (/) )
22 imadisj 5484 . . . . . . . . . . . 12  |-  ( ( f " ( g `
 x ) )  =  (/)  <->  ( dom  f  i^i  ( g `  x
) )  =  (/) )
2322necon3bii 2846 . . . . . . . . . . 11  |-  ( ( f " ( g `
 x ) )  =/=  (/)  <->  ( dom  f  i^i  ( g `  x
) )  =/=  (/) )
2421, 23sylibr 224 . . . . . . . . . 10  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( f " (
g `  x )
)  =/=  (/) )
258, 24jca 554 . . . . . . . . 9  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  x  e.  A )  ->  ( ( f "
( g `  x
) )  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )
2625ralrimiva 2966 . . . . . . . 8  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  A. x  e.  A  ( ( f "
( g `  x
) )  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )
27 acni2 8869 . . . . . . . 8  |-  ( ( Y  e. AC  A  /\  A. x  e.  A  ( ( f " (
g `  x )
)  C_  Y  /\  ( f " (
g `  x )
)  =/=  (/) ) )  ->  E. k ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f "
( g `  x
) ) ) )
282, 26, 27syl2anc 693 . . . . . . 7  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. k ( k : A --> Y  /\  A. x  e.  A  (
k `  x )  e.  ( f " (
g `  x )
) ) )
29 acnrcl 8865 . . . . . . . . 9  |-  ( Y  e. AC  A  ->  A  e. 
_V )
3029ad3antlr 767 . . . . . . . 8  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  A  e.  _V )
31 simp-4l 806 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  f : X -1-1-> Y )
32 f1f1orn 6148 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-> Y  -> 
f : X -1-1-onto-> ran  f
)
3331, 32syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  f : X
-1-1-onto-> ran  f )
34 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( k `  x )  e.  ( f " ( g `
 x ) ) )
353, 34sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( k `  x )  e.  ran  f )
36 f1ocnvfv2 6533 . . . . . . . . . . . . . 14  |-  ( ( f : X -1-1-onto-> ran  f  /\  ( k `  x
)  e.  ran  f
)  ->  ( f `  ( `' f `  ( k `  x
) ) )  =  ( k `  x
) )
3733, 35, 36syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( f `  ( `' f `  ( k `  x
) ) )  =  ( k `  x
) )
3837, 34eqeltrd 2701 . . . . . . . . . . . 12  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( f `  ( `' f `  ( k `  x
) ) )  e.  ( f " (
g `  x )
) )
39 f1ocnv 6149 . . . . . . . . . . . . . . 15  |-  ( f : X -1-1-onto-> ran  f  ->  `' f : ran  f -1-1-onto-> X )
40 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( `' f : ran  f -1-1-onto-> X  ->  `' f : ran  f
--> X )
4133, 39, 403syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  `' f : ran  f --> X )
4241, 35ffvelrnd 6360 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( `' f `  ( k `  x ) )  e.  X )
4313ad2ant2r 783 . . . . . . . . . . . . 13  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( g `  x )  C_  X
)
44 f1elima 6520 . . . . . . . . . . . . 13  |-  ( ( f : X -1-1-> Y  /\  ( `' f `  ( k `  x
) )  e.  X  /\  ( g `  x
)  C_  X )  ->  ( ( f `  ( `' f `  (
k `  x )
) )  e.  ( f " ( g `
 x ) )  <-> 
( `' f `  ( k `  x
) )  e.  ( g `  x ) ) )
4531, 42, 43, 44syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( (
f `  ( `' f `  ( k `  x ) ) )  e.  ( f "
( g `  x
) )  <->  ( `' f `  ( k `  x ) )  e.  ( g `  x
) ) )
4638, 45mpbid 222 . . . . . . . . . . 11  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  ( x  e.  A  /\  ( k `  x
)  e.  ( f
" ( g `  x ) ) ) )  ->  ( `' f `  ( k `  x ) )  e.  ( g `  x
) )
4746expr 643 . . . . . . . . . 10  |-  ( ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  /\  x  e.  A )  ->  ( ( k `  x )  e.  ( f " ( g `
 x ) )  ->  ( `' f `
 ( k `  x ) )  e.  ( g `  x
) ) )
4847ralimdva 2962 . . . . . . . . 9  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  k : A --> Y )  ->  ( A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) )  ->  A. x  e.  A  ( `' f `  (
k `  x )
)  e.  ( g `
 x ) ) )
4948impr 649 . . . . . . . 8  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  A. x  e.  A  ( `' f `  ( k `  x ) )  e.  ( g `  x
) )
50 acnlem 8871 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( `' f `  (
k `  x )
)  e.  ( g `
 x ) )  ->  E. h A. x  e.  A  ( h `  x )  e.  ( g `  x ) )
5130, 49, 50syl2anc 693 . . . . . . 7  |-  ( ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( k : A --> Y  /\  A. x  e.  A  ( k `  x )  e.  ( f " ( g `
 x ) ) ) )  ->  E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) )
5228, 51exlimddv 1863 . . . . . 6  |-  ( ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  /\  g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h A. x  e.  A  ( h `  x )  e.  ( g `  x ) )
5352ralrimiva 2966 . . . . 5  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) )
54 vex 3203 . . . . . . . 8  |-  f  e. 
_V
5554dmex 7099 . . . . . . 7  |-  dom  f  e.  _V
5614, 55syl6eqelr 2710 . . . . . 6  |-  ( f : X -1-1-> Y  ->  X  e.  _V )
57 isacn 8867 . . . . . 6  |-  ( ( X  e.  _V  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) ) )
5856, 29, 57syl2an 494 . . . . 5  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  ( X  e. AC  A 
<-> 
A. g  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. h A. x  e.  A  ( h `  x
)  e.  ( g `
 x ) ) )
5953, 58mpbird 247 . . . 4  |-  ( ( f : X -1-1-> Y  /\  Y  e. AC  A )  ->  X  e. AC  A )
6059ex 450 . . 3  |-  ( f : X -1-1-> Y  -> 
( Y  e. AC  A  ->  X  e. AC  A ) )
6160exlimiv 1858 . 2  |-  ( E. f  f : X -1-1-> Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
621, 61syl 17 1  |-  ( X  ~<_  Y  ->  ( Y  e. AC  A  ->  X  e. AC  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    ^m cmap 7857    ~<_ cdom 7953  AC wacn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-dom 7957  df-acn 8768
This theorem is referenced by:  acnen2  8878  dfac13  8964  iundomg  9363  iunctb  9396
  Copyright terms: Public domain W3C validator