| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > actfunsnf1o | Structured version Visualization version Unicode version | ||
| Description: The action |
| Ref | Expression |
|---|---|
| actfunsn.1 |
|
| actfunsn.2 |
|
| actfunsn.3 |
|
| actfunsn.4 |
|
| actfunsn.5 |
|
| Ref | Expression |
|---|---|
| actfunsnf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | actfunsn.5 |
. . 3
| |
| 2 | uneq1 3760 |
. . . 4
| |
| 3 | 2 | cbvmptv 4750 |
. . 3
|
| 4 | 1, 3 | eqtri 2644 |
. 2
|
| 5 | vex 3203 |
. . . 4
| |
| 6 | snex 4908 |
. . . 4
| |
| 7 | 5, 6 | unex 6956 |
. . 3
|
| 8 | 7 | a1i 11 |
. 2
|
| 9 | vex 3203 |
. . . 4
| |
| 10 | 9 | resex 5443 |
. . 3
|
| 11 | 10 | a1i 11 |
. 2
|
| 12 | rspe 3003 |
. . . . . . 7
| |
| 13 | 4, 7 | elrnmpti 5376 |
. . . . . . 7
|
| 14 | 12, 13 | sylibr 224 |
. . . . . 6
|
| 15 | 14 | adantll 750 |
. . . . 5
|
| 16 | simpr 477 |
. . . . . . 7
| |
| 17 | 16 | reseq1d 5395 |
. . . . . 6
|
| 18 | actfunsn.1 |
. . . . . . . . . 10
| |
| 19 | 18 | sselda 3603 |
. . . . . . . . 9
|
| 20 | elmapfn 7880 |
. . . . . . . . 9
| |
| 21 | 19, 20 | syl 17 |
. . . . . . . 8
|
| 22 | actfunsn.3 |
. . . . . . . . . 10
| |
| 23 | fnsng 5938 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | sylan 488 |
. . . . . . . . 9
|
| 25 | 24 | adantr 481 |
. . . . . . . 8
|
| 26 | actfunsn.4 |
. . . . . . . . . . 11
| |
| 27 | disjsn 4246 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | sylibr 224 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 481 |
. . . . . . . . 9
|
| 30 | 29 | adantr 481 |
. . . . . . . 8
|
| 31 | fnunres1 29417 |
. . . . . . . 8
| |
| 32 | 21, 25, 30, 31 | syl3anc 1326 |
. . . . . . 7
|
| 33 | 32 | adantr 481 |
. . . . . 6
|
| 34 | 17, 33 | eqtr2d 2657 |
. . . . 5
|
| 35 | 15, 34 | jca 554 |
. . . 4
|
| 36 | 35 | anasss 679 |
. . 3
|
| 37 | simpr 477 |
. . . . . 6
| |
| 38 | simpr 477 |
. . . . . . . . . 10
| |
| 39 | 38 | reseq1d 5395 |
. . . . . . . . 9
|
| 40 | 18 | ad3antrrr 766 |
. . . . . . . . . . . . 13
|
| 41 | simplr 792 |
. . . . . . . . . . . . 13
| |
| 42 | 40, 41 | sseldd 3604 |
. . . . . . . . . . . 12
|
| 43 | 42, 20 | syl 17 |
. . . . . . . . . . 11
|
| 44 | 22 | ad4antr 768 |
. . . . . . . . . . . 12
|
| 45 | simp-4r 807 |
. . . . . . . . . . . 12
| |
| 46 | 44, 45, 23 | syl2anc 693 |
. . . . . . . . . . 11
|
| 47 | 28 | ad4antr 768 |
. . . . . . . . . . 11
|
| 48 | 43, 46, 47, 31 | syl3anc 1326 |
. . . . . . . . . 10
|
| 49 | 48, 41 | eqeltrd 2701 |
. . . . . . . . 9
|
| 50 | 39, 49 | eqeltrd 2701 |
. . . . . . . 8
|
| 51 | simpr 477 |
. . . . . . . . 9
| |
| 52 | 51, 13 | sylib 208 |
. . . . . . . 8
|
| 53 | 50, 52 | r19.29a 3078 |
. . . . . . 7
|
| 54 | 53 | adantr 481 |
. . . . . 6
|
| 55 | 37, 54 | eqeltrd 2701 |
. . . . 5
|
| 56 | 37 | uneq1d 3766 |
. . . . . 6
|
| 57 | 39, 48 | eqtrd 2656 |
. . . . . . . . . 10
|
| 58 | 57 | uneq1d 3766 |
. . . . . . . . 9
|
| 59 | 58, 38 | eqtr4d 2659 |
. . . . . . . 8
|
| 60 | 59, 52 | r19.29a 3078 |
. . . . . . 7
|
| 61 | 60 | adantr 481 |
. . . . . 6
|
| 62 | 56, 61 | eqtr2d 2657 |
. . . . 5
|
| 63 | 55, 62 | jca 554 |
. . . 4
|
| 64 | 63 | anasss 679 |
. . 3
|
| 65 | 36, 64 | impbida 877 |
. 2
|
| 66 | 4, 8, 11, 65 | f1od 6885 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 |
| This theorem is referenced by: breprexplema 30708 |
| Copyright terms: Public domain | W3C validator |