Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   Unicode version

Theorem addltmulALT 29305
Description: A proof readability experiment for addltmul 11268. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 477 . . . . 5  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
2  <  A )
2 2re 11090 . . . . . . . 8  |-  2  e.  RR
32a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
2  e.  RR )
4 simpl 473 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  ->  A  e.  RR )
5 1re 10039 . . . . . . . 8  |-  1  e.  RR
65a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
1  e.  RR )
7 ltsub1 10524 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
83, 4, 6, 7syl3anc 1326 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( 2  <  A  <->  ( 2  -  1 )  <  ( A  - 
1 ) ) )
9 2cn 11091 . . . . . . . . 9  |-  2  e.  CC
10 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
11 df-2 11079 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
1211eqcomi 2631 . . . . . . . . 9  |-  ( 1  +  1 )  =  2
139, 10, 10, 12subaddrii 10370 . . . . . . . 8  |-  ( 2  -  1 )  =  1
1413breq1i 4660 . . . . . . 7  |-  ( ( 2  -  1 )  <  ( A  - 
1 )  <->  1  <  ( A  -  1 ) )
1514a1i 11 . . . . . 6  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( ( 2  -  1 )  <  ( A  -  1 )  <->  1  <  ( A  -  1 ) ) )
168, 15bitrd 268 . . . . 5  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
( 2  <  A  <->  1  <  ( A  - 
1 ) ) )
171, 16mpbid 222 . . . 4  |-  ( ( A  e.  RR  /\  2  <  A )  -> 
1  <  ( A  -  1 ) )
18 simpr 477 . . . . 5  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
2  <  B )
192a1i 11 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
2  e.  RR )
20 simpl 473 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  ->  B  e.  RR )
215a1i 11 . . . . . . 7  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
1  e.  RR )
22 ltsub1 10524 . . . . . . 7  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  1  e.  RR )  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
2319, 20, 21, 22syl3anc 1326 . . . . . 6  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( 2  <  B  <->  ( 2  -  1 )  <  ( B  - 
1 ) ) )
2413breq1i 4660 . . . . . . 7  |-  ( ( 2  -  1 )  <  ( B  - 
1 )  <->  1  <  ( B  -  1 ) )
2524a1i 11 . . . . . 6  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( ( 2  -  1 )  <  ( B  -  1 )  <->  1  <  ( B  -  1 ) ) )
2623, 25bitrd 268 . . . . 5  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
( 2  <  B  <->  1  <  ( B  - 
1 ) ) )
2718, 26mpbid 222 . . . 4  |-  ( ( B  e.  RR  /\  2  <  B )  -> 
1  <  ( B  -  1 ) )
2817, 27anim12i 590 . . 3  |-  ( ( ( A  e.  RR  /\  2  <  A )  /\  ( B  e.  RR  /\  2  < 
B ) )  -> 
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) ) )
2928an4s 869 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( A  -  1 )  /\  1  <  ( B  - 
1 ) ) )
30 peano2rem 10348 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
31 peano2rem 10348 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
3230, 31anim12i 590 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR ) )
3332anim1i 592 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
( ( ( A  -  1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  (
1  <  ( A  -  1 )  /\  1  <  ( B  - 
1 ) ) ) )
34 mulgt1 10882 . . . . . 6  |-  ( ( ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3533, 34syl 17 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
3635ex 450 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
3736adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) )  ->  1  <  ( ( A  -  1 )  x.  ( B  -  1 ) ) ) )
38 recn 10026 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  e.  CC )
3910a1i 11 . . . . . . . . 9  |-  ( A  e.  RR  ->  1  e.  CC )
4038, 39jca 554 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  e.  CC  /\  1  e.  CC ) )
41 recn 10026 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  e.  CC )
4210a1i 11 . . . . . . . . 9  |-  ( B  e.  RR  ->  1  e.  CC )
4341, 42jca 554 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  e.  CC  /\  1  e.  CC ) )
4440, 43anim12i 590 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) ) )
45 mulsub 10473 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
4644, 45syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
4746breq2d 4665 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4847biimpd 219 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  ->  1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4948adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) )  -> 
1  <  ( (
( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
5010mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
51 eqcom 2629 . . . . . . . . . 10  |-  ( ( 1  x.  1 )  =  1  <->  1  =  ( 1  x.  1 ) )
5251biimpi 206 . . . . . . . . 9  |-  ( ( 1  x.  1 )  =  1  ->  1  =  ( 1  x.  1 ) )
5350, 52mp1i 13 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  1  =  ( 1  x.  1 ) )
5453oveq2d 6666 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  1 )  =  ( ( A  x.  B )  +  ( 1  x.  1 ) ) )
55 mulid1 10037 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
56 eqcom 2629 . . . . . . . . . . . 12  |-  ( ( A  x.  1 )  =  A  <->  A  =  ( A  x.  1
) )
5756biimpi 206 . . . . . . . . . . 11  |-  ( ( A  x.  1 )  =  A  ->  A  =  ( A  x.  1 ) )
5855, 57syl 17 . . . . . . . . . 10  |-  ( A  e.  CC  ->  A  =  ( A  x.  1 ) )
5938, 58syl 17 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =  ( A  x.  1 ) )
6059adantr 481 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  =  ( A  x.  1 ) )
61 mulid1 10037 . . . . . . . . . . 11  |-  ( B  e.  CC  ->  ( B  x.  1 )  =  B )
6241, 61syl 17 . . . . . . . . . 10  |-  ( B  e.  RR  ->  ( B  x.  1 )  =  B )
63 eqcom 2629 . . . . . . . . . . 11  |-  ( ( B  x.  1 )  =  B  <->  B  =  ( B  x.  1
) )
6463biimpi 206 . . . . . . . . . 10  |-  ( ( B  x.  1 )  =  B  ->  B  =  ( B  x.  1 ) )
6562, 64syl 17 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  =  ( B  x.  1 ) )
6665adantl 482 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  =  ( B  x.  1 ) )
6760, 66oveq12d 6668 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  =  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )
6854, 67oveq12d 6668 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  B )  +  1 )  -  ( A  +  B )
)  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
6968breq2d 4665 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
70 readdcl 10019 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
715a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  1  e.  RR )
72 remulcl 10021 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
73 readdcl 10019 . . . . . . . 8  |-  ( ( ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( A  x.  B )  +  1 )  e.  RR )
7472, 71, 73syl2anc 693 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  1 )  e.  RR )
75 ltaddsub2 10503 . . . . . . 7  |-  ( ( ( A  +  B
)  e.  RR  /\  1  e.  RR  /\  (
( A  x.  B
)  +  1 )  e.  RR )  -> 
( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <->  1  <  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) ) )
7670, 71, 74, 75syl3anc 1326 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <->  1  <  ( ( ( A  x.  B
)  +  1 )  -  ( A  +  B ) ) ) )
77 ltadd1 10495 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  RR  /\  ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( A  +  B )  <  ( A  x.  B )  <->  ( ( A  +  B
)  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
7870, 72, 71, 77syl3anc 1326 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  +  B )  <  ( A  x.  B )  <->  ( ( A  +  B
)  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
7978bicomd 213 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
8079biimpd 219 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  +  B )  +  1 )  <  (
( A  x.  B
)  +  1 )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8176, 80sylbird 250 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  1 )  -  ( A  +  B ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8269, 81sylbird 250 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8382adantr 481 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
1  <  ( (
( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  -> 
( A  +  B
)  <  ( A  x.  B ) ) )
8437, 49, 833syld 60 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  (
( 1  <  ( A  -  1 )  /\  1  <  ( B  -  1 ) )  ->  ( A  +  B )  <  ( A  x.  B )
) )
8529, 84mpd 15 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266   2c2 11070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-2 11079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator