Users' Mathboxes Mathbox for Stefan Allan < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addltmulALT Structured version   Visualization version   GIF version

Theorem addltmulALT 29305
Description: A proof readability experiment for addltmul 11268. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
addltmulALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmulALT
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 < 𝐴)
2 2re 11090 . . . . . . . 8 2 ∈ ℝ
32a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 2 ∈ ℝ)
4 simpl 473 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 𝐴 ∈ ℝ)
5 1re 10039 . . . . . . . 8 1 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 ∈ ℝ)
7 ltsub1 10524 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
83, 4, 6, 7syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
9 2cn 11091 . . . . . . . . 9 2 ∈ ℂ
10 ax-1cn 9994 . . . . . . . . 9 1 ∈ ℂ
11 df-2 11079 . . . . . . . . . 10 2 = (1 + 1)
1211eqcomi 2631 . . . . . . . . 9 (1 + 1) = 2
139, 10, 10, 12subaddrii 10370 . . . . . . . 8 (2 − 1) = 1
1413breq1i 4660 . . . . . . 7 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
1514a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1)))
168, 15bitrd 268 . . . . 5 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
171, 16mpbid 222 . . . 4 ((𝐴 ∈ ℝ ∧ 2 < 𝐴) → 1 < (𝐴 − 1))
18 simpr 477 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 < 𝐵)
192a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 2 ∈ ℝ)
20 simpl 473 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 𝐵 ∈ ℝ)
215a1i 11 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 ∈ ℝ)
22 ltsub1 10524 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2319, 20, 21, 22syl3anc 1326 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
2413breq1i 4660 . . . . . . 7 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
2524a1i 11 . . . . . 6 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1)))
2623, 25bitrd 268 . . . . 5 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
2718, 26mpbid 222 . . . 4 ((𝐵 ∈ ℝ ∧ 2 < 𝐵) → 1 < (𝐵 − 1))
2817, 27anim12i 590 . . 3 (((𝐴 ∈ ℝ ∧ 2 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
2928an4s 869 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)))
30 peano2rem 10348 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
31 peano2rem 10348 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
3230, 31anim12i 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ))
3332anim1i 592 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
34 mulgt1 10882 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3533, 34syl 17 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
3635ex 450 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
3736adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
38 recn 10026 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3910a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℂ)
4038, 39jca 554 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℂ ∧ 1 ∈ ℂ))
41 recn 10026 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4210a1i 11 . . . . . . . . 9 (𝐵 ∈ ℝ → 1 ∈ ℂ)
4341, 42jca 554 . . . . . . . 8 (𝐵 ∈ ℝ → (𝐵 ∈ ℂ ∧ 1 ∈ ℂ))
4440, 43anim12i 590 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)))
45 mulsub 10473 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4644, 45syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
4746breq2d 4665 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4847biimpd 219 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4948adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < ((𝐴 − 1) · (𝐵 − 1)) → 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
5010mulid2i 10043 . . . . . . . . 9 (1 · 1) = 1
51 eqcom 2629 . . . . . . . . . 10 ((1 · 1) = 1 ↔ 1 = (1 · 1))
5251biimpi 206 . . . . . . . . 9 ((1 · 1) = 1 → 1 = (1 · 1))
5350, 52mp1i 13 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 = (1 · 1))
5453oveq2d 6666 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) = ((𝐴 · 𝐵) + (1 · 1)))
55 mulid1 10037 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
56 eqcom 2629 . . . . . . . . . . . 12 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5756biimpi 206 . . . . . . . . . . 11 ((𝐴 · 1) = 𝐴𝐴 = (𝐴 · 1))
5855, 57syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = (𝐴 · 1))
5938, 58syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 = (𝐴 · 1))
6059adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 = (𝐴 · 1))
61 mulid1 10037 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (𝐵 · 1) = 𝐵)
6241, 61syl 17 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
63 eqcom 2629 . . . . . . . . . . 11 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6463biimpi 206 . . . . . . . . . 10 ((𝐵 · 1) = 𝐵𝐵 = (𝐵 · 1))
6562, 64syl 17 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 = (𝐵 · 1))
6665adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 = (𝐵 · 1))
6760, 66oveq12d 6668 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) = ((𝐴 · 1) + (𝐵 · 1)))
6854, 67oveq12d 6668 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
6968breq2d 4665 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
70 readdcl 10019 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
715a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 1 ∈ ℝ)
72 remulcl 10021 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
73 readdcl 10019 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
7472, 71, 73syl2anc 693 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + 1) ∈ ℝ)
75 ltaddsub2 10503 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + 1) ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
7670, 71, 74, 75syl3anc 1326 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ 1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵))))
77 ltadd1 10495 . . . . . . . . 9 (((𝐴 + 𝐵) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7870, 72, 71, 77syl3anc 1326 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 + 𝐵) < (𝐴 · 𝐵) ↔ ((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1)))
7978bicomd 213 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8079biimpd 219 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) + 1) < ((𝐴 · 𝐵) + 1) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8176, 80sylbird 250 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + 1) − (𝐴 + 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8269, 81sylbird 250 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8382adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8437, 49, 833syld 60 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
8529, 84mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  2c2 11070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-2 11079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator