| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axgroth6 | Structured version Visualization version Unicode version | ||
| Description: The Tarski-Grothendieck
axiom using abbreviations. This version is
called Tarski's axiom: given a set |
| Ref | Expression |
|---|---|
| axgroth6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgroth5 9646 |
. 2
| |
| 2 | biid 251 |
. . . 4
| |
| 3 | pweq 4161 |
. . . . . . . . 9
| |
| 4 | 3 | sseq1d 3632 |
. . . . . . . 8
|
| 5 | 4 | cbvralv 3171 |
. . . . . . 7
|
| 6 | ssid 3624 |
. . . . . . . . . 10
| |
| 7 | sseq2 3627 |
. . . . . . . . . . 11
| |
| 8 | 7 | rspcev 3309 |
. . . . . . . . . 10
|
| 9 | 6, 8 | mpan2 707 |
. . . . . . . . 9
|
| 10 | pweq 4161 |
. . . . . . . . . . . . 13
| |
| 11 | 10 | sseq1d 3632 |
. . . . . . . . . . . 12
|
| 12 | 11 | rspccv 3306 |
. . . . . . . . . . 11
|
| 13 | pwss 4175 |
. . . . . . . . . . . 12
| |
| 14 | vpwex 4849 |
. . . . . . . . . . . . 13
| |
| 15 | sseq1 3626 |
. . . . . . . . . . . . . 14
| |
| 16 | eleq1 2689 |
. . . . . . . . . . . . . 14
| |
| 17 | 15, 16 | imbi12d 334 |
. . . . . . . . . . . . 13
|
| 18 | 14, 17 | spcv 3299 |
. . . . . . . . . . . 12
|
| 19 | 13, 18 | sylbi 207 |
. . . . . . . . . . 11
|
| 20 | 12, 19 | syl6 35 |
. . . . . . . . . 10
|
| 21 | 20 | rexlimdv 3030 |
. . . . . . . . 9
|
| 22 | 9, 21 | impbid2 216 |
. . . . . . . 8
|
| 23 | 22 | ralbidv 2986 |
. . . . . . 7
|
| 24 | 5, 23 | sylbi 207 |
. . . . . 6
|
| 25 | 24 | pm5.32i 669 |
. . . . 5
|
| 26 | r19.26 3064 |
. . . . 5
| |
| 27 | r19.26 3064 |
. . . . 5
| |
| 28 | 25, 26, 27 | 3bitr4i 292 |
. . . 4
|
| 29 | selpw 4165 |
. . . . . 6
| |
| 30 | impexp 462 |
. . . . . . . . 9
| |
| 31 | vex 3203 |
. . . . . . . . . . . 12
| |
| 32 | ssdomg 8001 |
. . . . . . . . . . . 12
| |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . 11
|
| 34 | 33 | pm4.71i 664 |
. . . . . . . . . 10
|
| 35 | 34 | imbi1i 339 |
. . . . . . . . 9
|
| 36 | brsdom 7978 |
. . . . . . . . . . . 12
| |
| 37 | 36 | imbi1i 339 |
. . . . . . . . . . 11
|
| 38 | impexp 462 |
. . . . . . . . . . 11
| |
| 39 | 37, 38 | bitri 264 |
. . . . . . . . . 10
|
| 40 | 39 | imbi2i 326 |
. . . . . . . . 9
|
| 41 | 30, 35, 40 | 3bitr4ri 293 |
. . . . . . . 8
|
| 42 | 41 | pm5.74ri 261 |
. . . . . . 7
|
| 43 | pm4.64 387 |
. . . . . . 7
| |
| 44 | 42, 43 | syl6bb 276 |
. . . . . 6
|
| 45 | 29, 44 | sylbi 207 |
. . . . 5
|
| 46 | 45 | ralbiia 2979 |
. . . 4
|
| 47 | 2, 28, 46 | 3anbi123i 1251 |
. . 3
|
| 48 | 47 | exbii 1774 |
. 2
|
| 49 | 1, 48 | mpbir 221 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-groth 9645 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: grothomex 9651 grothac 9652 |
| Copyright terms: Public domain | W3C validator |