MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothac Structured version   Visualization version   Unicode version

Theorem grothac 9652
Description: The Tarski-Grothendieck Axiom implies the Axiom of Choice (in the form of cardeqv 9291). This can be put in a more conventional form via ween 8858 and dfac8 8957. Note that the mere existence of strongly inaccessible cardinals doesn't imply AC, but rather the particular form of the Tarski-Grothendieck axiom (see http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html). (Contributed by Mario Carneiro, 19-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grothac  |-  dom  card  =  _V

Proof of Theorem grothac
Dummy variables  x  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pweq 4161 . . . . . . . . . 10  |-  ( x  =  y  ->  ~P x  =  ~P y
)
21sseq1d 3632 . . . . . . . . 9  |-  ( x  =  y  ->  ( ~P x  C_  u  <->  ~P y  C_  u ) )
31eleq1d 2686 . . . . . . . . 9  |-  ( x  =  y  ->  ( ~P x  e.  u  <->  ~P y  e.  u ) )
42, 3anbi12d 747 . . . . . . . 8  |-  ( x  =  y  ->  (
( ~P x  C_  u  /\  ~P x  e.  u )  <->  ( ~P y  C_  u  /\  ~P y  e.  u )
) )
54rspcva 3307 . . . . . . 7  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( ~P y  C_  u  /\  ~P y  e.  u
) )
65simpld 475 . . . . . 6  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ~P y  C_  u )
7 rabss 3679 . . . . . . 7  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  <->  A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
) )
87biimpri 218 . . . . . 6  |-  ( A. x  e.  ~P  u
( x  ~<  u  ->  x  e.  u )  ->  { x  e. 
~P u  |  x 
~<  u }  C_  u
)
9 vex 3203 . . . . . . . . . 10  |-  y  e. 
_V
109canth2 8113 . . . . . . . . 9  |-  y  ~<  ~P y
11 sdomdom 7983 . . . . . . . . 9  |-  ( y 
~<  ~P y  ->  y  ~<_  ~P y )
1210, 11ax-mp 5 . . . . . . . 8  |-  y  ~<_  ~P y
13 vex 3203 . . . . . . . . 9  |-  u  e. 
_V
14 ssdomg 8001 . . . . . . . . 9  |-  ( u  e.  _V  ->  ( ~P y  C_  u  ->  ~P y  ~<_  u )
)
1513, 14ax-mp 5 . . . . . . . 8  |-  ( ~P y  C_  u  ->  ~P y  ~<_  u )
16 domtr 8009 . . . . . . . 8  |-  ( ( y  ~<_  ~P y  /\  ~P y  ~<_  u )  -> 
y  ~<_  u )
1712, 15, 16sylancr 695 . . . . . . 7  |-  ( ~P y  C_  u  ->  y  ~<_  u )
18 tskwe 8776 . . . . . . . 8  |-  ( ( u  e.  _V  /\  { x  e.  ~P u  |  x  ~<  u }  C_  u )  ->  u  e.  dom  card )
1913, 18mpan 706 . . . . . . 7  |-  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  u  e.  dom  card )
20 numdom 8861 . . . . . . . 8  |-  ( ( u  e.  dom  card  /\  y  ~<_  u )  -> 
y  e.  dom  card )
2120expcom 451 . . . . . . 7  |-  ( y  ~<_  u  ->  ( u  e.  dom  card  ->  y  e. 
dom  card ) )
2217, 19, 21syl2im 40 . . . . . 6  |-  ( ~P y  C_  u  ->  ( { x  e.  ~P u  |  x  ~<  u }  C_  u  ->  y  e.  dom  card )
)
236, 8, 22syl2im 40 . . . . 5  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
) )  ->  ( A. x  e.  ~P  u ( x  ~<  u  ->  x  e.  u
)  ->  y  e.  dom  card ) )
24233impia 1261 . . . 4  |-  ( ( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )  -> 
y  e.  dom  card )
25 axgroth6 9650 . . . 4  |-  E. u
( y  e.  u  /\  A. x  e.  u  ( ~P x  C_  u  /\  ~P x  e.  u
)  /\  A. x  e.  ~P  u ( x 
~<  u  ->  x  e.  u ) )
2624, 25exlimiiv 1859 . . 3  |-  y  e. 
dom  card
2726, 92th 254 . 2  |-  ( y  e.  dom  card  <->  y  e.  _V )
2827eqriv 2619 1  |-  dom  card  =  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   dom cdm 5114    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-groth 9645
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765
This theorem is referenced by:  axgroth3  9653
  Copyright terms: Public domain W3C validator