| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj517 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj518 30956. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj517.1 |
|
| bnj517.2 |
|
| Ref | Expression |
|---|---|
| bnj517 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . 6
| |
| 2 | simpl2 1065 |
. . . . . . 7
| |
| 3 | bnj517.1 |
. . . . . . 7
| |
| 4 | 2, 3 | sylib 208 |
. . . . . 6
|
| 5 | 1, 4 | sylan9eqr 2678 |
. . . . 5
|
| 6 | bnj213 30952 |
. . . . 5
| |
| 7 | 5, 6 | syl6eqss 3655 |
. . . 4
|
| 8 | bnj517.2 |
. . . . . . 7
| |
| 9 | r19.29r 3073 |
. . . . . . . . . 10
| |
| 10 | eleq1 2689 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | biimpd 219 |
. . . . . . . . . . . . 13
|
| 12 | fveq2 6191 |
. . . . . . . . . . . . . . 15
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
|
| 14 | bnj213 30952 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | 14 | rgenw 2924 |
. . . . . . . . . . . . . . . 16
|
| 16 | iunss 4561 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 15, 16 | mpbir 221 |
. . . . . . . . . . . . . . 15
|
| 18 | sseq1 3626 |
. . . . . . . . . . . . . . 15
| |
| 19 | 17, 18 | mpbiri 248 |
. . . . . . . . . . . . . 14
|
| 20 | 13, 19 | syl6bir 244 |
. . . . . . . . . . . . 13
|
| 21 | 11, 20 | imim12d 81 |
. . . . . . . . . . . 12
|
| 22 | 21 | imp 445 |
. . . . . . . . . . 11
|
| 23 | 22 | rexlimivw 3029 |
. . . . . . . . . 10
|
| 24 | 9, 23 | syl 17 |
. . . . . . . . 9
|
| 25 | 24 | ex 450 |
. . . . . . . 8
|
| 26 | 25 | com3l 89 |
. . . . . . 7
|
| 27 | 8, 26 | sylbi 207 |
. . . . . 6
|
| 28 | 27 | 3ad2ant3 1084 |
. . . . 5
|
| 29 | 28 | imp31 448 |
. . . 4
|
| 30 | simpr 477 |
. . . . . 6
| |
| 31 | simpl1 1064 |
. . . . . 6
| |
| 32 | elnn 7075 |
. . . . . 6
| |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . 5
|
| 34 | nn0suc 7090 |
. . . . 5
| |
| 35 | 33, 34 | syl 17 |
. . . 4
|
| 36 | 7, 29, 35 | mpjaodan 827 |
. . 3
|
| 37 | 36 | ralrimiva 2966 |
. 2
|
| 38 | fveq2 6191 |
. . . 4
| |
| 39 | 38 | sseq1d 3632 |
. . 3
|
| 40 | 39 | cbvralv 3171 |
. 2
|
| 41 | 37, 40 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fv 5896 df-om 7066 df-bnj14 30755 |
| This theorem is referenced by: bnj518 30956 |
| Copyright terms: Public domain | W3C validator |