Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Visualization version   Unicode version

Theorem bnj570 30975
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3  |-  D  =  ( om  \  { (/)
} )
bnj570.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj570.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj570.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj570.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj570.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj570.40  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
bnj570.30  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj570  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Distinct variable groups:    y, G    y, f    y, i
Allowed substitution hints:    ta( y, f, i, m, n, p)    et( y, f, i, m, n, p)    rh( y,
f, i, m, n, p)    A( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, f, i, m, n, p)    R( y, f, i, m, n, p)    G( f, i, m, n, p)    K( y,
f, i, m, n, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 30768 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh ) 
<->  ( R  FrSe  A  /\  ( ta  /\  ( et  /\  rh ) ) ) )
2 bnj570.17 . . . . . 6  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
32simp3bi 1078 . . . . 5  |-  ( ta 
->  ps' )
4 bnj570.21 . . . . . . . 8  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
54simp1bi 1076 . . . . . . 7  |-  ( rh 
->  i  e.  om )
65adantl 482 . . . . . 6  |-  ( ( et  /\  rh )  ->  i  e.  om )
7 bnj570.19 . . . . . . 7  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
87, 4bnj563 30813 . . . . . 6  |-  ( ( et  /\  rh )  ->  suc  i  e.  m )
96, 8jca 554 . . . . 5  |-  ( ( et  /\  rh )  ->  ( i  e. 
om  /\  suc  i  e.  m ) )
10 bnj570.30 . . . . . . . 8  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
1110bnj946 30845 . . . . . . 7  |-  ( ps'  <->  A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
12 sp 2053 . . . . . . 7  |-  ( A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1311, 12sylbi 207 . . . . . 6  |-  ( ps'  ->  ( i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
1413imp32 449 . . . . 5  |-  ( ( ps'  /\  ( i  e. 
om  /\  suc  i  e.  m ) )  -> 
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
153, 9, 14syl2an 494 . . . 4  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
161, 15simplbiim 659 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
17 bnj570.40 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
1817bnj930 30840 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  Fun  G )
1918bnj721 30827 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  Fun  G )
20 bnj570.26 . . . . . 6  |-  G  =  ( f  u.  { <. m ,  C >. } )
2120bnj931 30841 . . . . 5  |-  f  C_  G
2221a1i 11 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  f  C_  G
)
23 bnj667 30822 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( ta  /\  et  /\  rh ) )
242bnj564 30814 . . . . . . 7  |-  ( ta 
->  dom  f  =  m )
25 eleq2 2690 . . . . . . . 8  |-  ( dom  f  =  m  -> 
( suc  i  e.  dom  f  <->  suc  i  e.  m
) )
2625biimpar 502 . . . . . . 7  |-  ( ( dom  f  =  m  /\  suc  i  e.  m )  ->  suc  i  e.  dom  f )
2724, 8, 26syl2an 494 . . . . . 6  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  suc  i  e.  dom  f )
28273impb 1260 . . . . 5  |-  ( ( ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
2923, 28syl 17 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
3019, 22, 29bnj1502 30918 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  ( f `  suc  i
) )
312simp1bi 1076 . . . . . . . . 9  |-  ( ta 
->  f  Fn  m
)
32 bnj252 30769 . . . . . . . . . . . . . 14  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( m  e.  D  /\  (
n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p
) ) )
3332simplbi 476 . . . . . . . . . . . . 13  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  ->  m  e.  D )
347, 33sylbi 207 . . . . . . . . . . . 12  |-  ( et 
->  m  e.  D
)
35 eldifi 3732 . . . . . . . . . . . . 13  |-  ( m  e.  ( om  \  { (/)
} )  ->  m  e.  om )
36 bnj570.3 . . . . . . . . . . . . 13  |-  D  =  ( om  \  { (/)
} )
3735, 36eleq2s 2719 . . . . . . . . . . . 12  |-  ( m  e.  D  ->  m  e.  om )
38 nnord 7073 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  Ord  m )
3934, 37, 383syl 18 . . . . . . . . . . 11  |-  ( et 
->  Ord  m )
4039adantr 481 . . . . . . . . . 10  |-  ( ( et  /\  rh )  ->  Ord  m )
4140, 8jca 554 . . . . . . . . 9  |-  ( ( et  /\  rh )  ->  ( Ord  m  /\  suc  i  e.  m
) )
4231, 41anim12i 590 . . . . . . . 8  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m ) ) )
43 fndm 5990 . . . . . . . . 9  |-  ( f  Fn  m  ->  dom  f  =  m )
44 elelsuc 5797 . . . . . . . . . 10  |-  ( suc  i  e.  m  ->  suc  i  e.  suc  m )
45 ordsucelsuc 7022 . . . . . . . . . . 11  |-  ( Ord  m  ->  ( i  e.  m  <->  suc  i  e.  suc  m ) )
4645biimpar 502 . . . . . . . . . 10  |-  ( ( Ord  m  /\  suc  i  e.  suc  m )  ->  i  e.  m
)
4744, 46sylan2 491 . . . . . . . . 9  |-  ( ( Ord  m  /\  suc  i  e.  m )  ->  i  e.  m )
4843, 47anim12i 590 . . . . . . . 8  |-  ( ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m )
)  ->  ( dom  f  =  m  /\  i  e.  m )
)
49 eleq2 2690 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( i  e.  dom  f 
<->  i  e.  m ) )
5049biimpar 502 . . . . . . . 8  |-  ( ( dom  f  =  m  /\  i  e.  m
)  ->  i  e.  dom  f )
5142, 48, 503syl 18 . . . . . . 7  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  i  e.  dom  f )
52513impb 1260 . . . . . 6  |-  ( ( ta  /\  et  /\  rh )  ->  i  e. 
dom  f )
5323, 52syl 17 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  i  e.  dom  f )
5419, 22, 53bnj1502 30918 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  i )  =  ( f `  i ) )
5554iuneq1d 4545 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
5616, 30, 553eqtr4d 2666 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
57 bnj570.24 . 2  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
5856, 57syl6eqr 2674 1  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   U_ciun 4520   dom cdm 5114   Ord word 5722   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   omcom 7065    /\ w-bnj17 30752    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-om 7066  df-bnj17 30753
This theorem is referenced by:  bnj571  30976
  Copyright terms: Public domain W3C validator