| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj570 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj570.3 |
|
| bnj570.17 |
|
| bnj570.19 |
|
| bnj570.21 |
|
| bnj570.24 |
|
| bnj570.26 |
|
| bnj570.40 |
|
| bnj570.30 |
|
| Ref | Expression |
|---|---|
| bnj570 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj251 30768 |
. . . 4
| |
| 2 | bnj570.17 |
. . . . . 6
| |
| 3 | 2 | simp3bi 1078 |
. . . . 5
|
| 4 | bnj570.21 |
. . . . . . . 8
| |
| 5 | 4 | simp1bi 1076 |
. . . . . . 7
|
| 6 | 5 | adantl 482 |
. . . . . 6
|
| 7 | bnj570.19 |
. . . . . . 7
| |
| 8 | 7, 4 | bnj563 30813 |
. . . . . 6
|
| 9 | 6, 8 | jca 554 |
. . . . 5
|
| 10 | bnj570.30 |
. . . . . . . 8
| |
| 11 | 10 | bnj946 30845 |
. . . . . . 7
|
| 12 | sp 2053 |
. . . . . . 7
| |
| 13 | 11, 12 | sylbi 207 |
. . . . . 6
|
| 14 | 13 | imp32 449 |
. . . . 5
|
| 15 | 3, 9, 14 | syl2an 494 |
. . . 4
|
| 16 | 1, 15 | simplbiim 659 |
. . 3
|
| 17 | bnj570.40 |
. . . . . 6
| |
| 18 | 17 | bnj930 30840 |
. . . . 5
|
| 19 | 18 | bnj721 30827 |
. . . 4
|
| 20 | bnj570.26 |
. . . . . 6
| |
| 21 | 20 | bnj931 30841 |
. . . . 5
|
| 22 | 21 | a1i 11 |
. . . 4
|
| 23 | bnj667 30822 |
. . . . 5
| |
| 24 | 2 | bnj564 30814 |
. . . . . . 7
|
| 25 | eleq2 2690 |
. . . . . . . 8
| |
| 26 | 25 | biimpar 502 |
. . . . . . 7
|
| 27 | 24, 8, 26 | syl2an 494 |
. . . . . 6
|
| 28 | 27 | 3impb 1260 |
. . . . 5
|
| 29 | 23, 28 | syl 17 |
. . . 4
|
| 30 | 19, 22, 29 | bnj1502 30918 |
. . 3
|
| 31 | 2 | simp1bi 1076 |
. . . . . . . . 9
|
| 32 | bnj252 30769 |
. . . . . . . . . . . . . 14
| |
| 33 | 32 | simplbi 476 |
. . . . . . . . . . . . 13
|
| 34 | 7, 33 | sylbi 207 |
. . . . . . . . . . . 12
|
| 35 | eldifi 3732 |
. . . . . . . . . . . . 13
| |
| 36 | bnj570.3 |
. . . . . . . . . . . . 13
| |
| 37 | 35, 36 | eleq2s 2719 |
. . . . . . . . . . . 12
|
| 38 | nnord 7073 |
. . . . . . . . . . . 12
| |
| 39 | 34, 37, 38 | 3syl 18 |
. . . . . . . . . . 11
|
| 40 | 39 | adantr 481 |
. . . . . . . . . 10
|
| 41 | 40, 8 | jca 554 |
. . . . . . . . 9
|
| 42 | 31, 41 | anim12i 590 |
. . . . . . . 8
|
| 43 | fndm 5990 |
. . . . . . . . 9
| |
| 44 | elelsuc 5797 |
. . . . . . . . . 10
| |
| 45 | ordsucelsuc 7022 |
. . . . . . . . . . 11
| |
| 46 | 45 | biimpar 502 |
. . . . . . . . . 10
|
| 47 | 44, 46 | sylan2 491 |
. . . . . . . . 9
|
| 48 | 43, 47 | anim12i 590 |
. . . . . . . 8
|
| 49 | eleq2 2690 |
. . . . . . . . 9
| |
| 50 | 49 | biimpar 502 |
. . . . . . . 8
|
| 51 | 42, 48, 50 | 3syl 18 |
. . . . . . 7
|
| 52 | 51 | 3impb 1260 |
. . . . . 6
|
| 53 | 23, 52 | syl 17 |
. . . . 5
|
| 54 | 19, 22, 53 | bnj1502 30918 |
. . . 4
|
| 55 | 54 | iuneq1d 4545 |
. . 3
|
| 56 | 16, 30, 55 | 3eqtr4d 2666 |
. 2
|
| 57 | bnj570.24 |
. 2
| |
| 58 | 56, 57 | syl6eqr 2674 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-om 7066 df-bnj17 30753 |
| This theorem is referenced by: bnj571 30976 |
| Copyright terms: Public domain | W3C validator |