Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj864 Structured version   Visualization version   Unicode version

Theorem bnj864 30992
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj864.1  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
bnj864.2  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
bnj864.3  |-  D  =  ( om  \  { (/)
} )
bnj864.4  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
bnj864.5  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
Assertion
Ref Expression
bnj864  |-  ( ch 
->  E! f th )
Distinct variable groups:    A, f,
i, n, y    D, f, i, n    R, f, i, n, y    f, X, n
Allowed substitution hints:    ph( y, f, i, n)    ps( y,
f, i, n)    ch( y, f, i, n)    th( y,
f, i, n)    D( y)    X( y, i)

Proof of Theorem bnj864
StepHypRef Expression
1 bnj864.1 . . . . 5  |-  ( ph  <->  ( f `  (/) )  = 
pred ( X ,  A ,  R )
)
2 bnj864.2 . . . . 5  |-  ( ps  <->  A. i  e.  om  ( suc  i  e.  n  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
3 bnj864.3 . . . . 5  |-  D  =  ( om  \  { (/)
} )
41, 2, 3bnj852 30991 . . . 4  |-  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps ) )
5 df-ral 2917 . . . . . 6  |-  ( A. n  e.  D  E! f ( f  Fn  n  /\  ph  /\  ps )  <->  A. n ( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
65imbi2i 326 . . . . 5  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  ( ( R 
FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) ) )
7 19.21v 1868 . . . . 5  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  A. n
( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) ) )
8 impexp 462 . . . . . . 7  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) ) )
9 df-3an 1039 . . . . . . . . 9  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  <->  ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D ) )
109bicomi 214 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D ) )
1110imbi1i 339 . . . . . . 7  |-  ( ( ( ( R  FrSe  A  /\  X  e.  A
)  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
128, 11bitr3i 266 . . . . . 6  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  ( n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps )
) )  <->  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )
1312albii 1747 . . . . 5  |-  ( A. n ( ( R 
FrSe  A  /\  X  e.  A )  ->  (
n  e.  D  ->  E! f ( f  Fn  n  /\  ph  /\  ps ) ) )  <->  A. n
( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
) )
146, 7, 133bitr2i 288 . . . 4  |-  ( ( ( R  FrSe  A  /\  X  e.  A
)  ->  A. n  e.  D  E! f
( f  Fn  n  /\  ph  /\  ps )
)  <->  A. n ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) ) )
154, 14mpbi 220 . . 3  |-  A. n
( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D
)  ->  E! f
( f  Fn  n  /\  ph  /\  ps )
)
1615spi 2054 . 2  |-  ( ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )  ->  E! f ( f  Fn  n  /\  ph  /\ 
ps ) )
17 bnj864.4 . 2  |-  ( ch  <->  ( R  FrSe  A  /\  X  e.  A  /\  n  e.  D )
)
18 bnj864.5 . . 3  |-  ( th  <->  ( f  Fn  n  /\  ph 
/\  ps ) )
1918eubii 2492 . 2  |-  ( E! f th  <->  E! f
( f  Fn  n  /\  ph  /\  ps )
)
2016, 17, 193imtr4i 281 1  |-  ( ch 
->  E! f th )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E!weu 2470   A.wral 2912    \ cdif 3571   (/)c0 3915   {csn 4177   U_ciun 4520   suc csuc 5725    Fn wfn 5883   ` cfv 5888   omcom 7065    predc-bnj14 30754    FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj849  30995
  Copyright terms: Public domain W3C validator