Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br2base Structured version   Visualization version   Unicode version

Theorem br2base 30331
Description: The base set for the generator of the Borel sigma-algebra on  ( RR  X.  RR ) is indeed  ( RR  X.  RR ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
br2base  |-  U. ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  =  ( RR  X.  RR )
Distinct variable group:    x, y

Proof of Theorem br2base
StepHypRef Expression
1 brsigasspwrn 30248 . . . . . . . 8  |- 𝔅 
C_  ~P RR
21sseli 3599 . . . . . . 7  |-  ( x  e. 𝔅  ->  x  e.  ~P RR )
32elpwid 4170 . . . . . 6  |-  ( x  e. 𝔅  ->  x  C_  RR )
41sseli 3599 . . . . . . 7  |-  ( y  e. 𝔅  ->  y  e.  ~P RR )
54elpwid 4170 . . . . . 6  |-  ( y  e. 𝔅  ->  y  C_  RR )
6 xpss12 5225 . . . . . 6  |-  ( ( x  C_  RR  /\  y  C_  RR )  ->  (
x  X.  y ) 
C_  ( RR  X.  RR ) )
73, 5, 6syl2an 494 . . . . 5  |-  ( ( x  e. 𝔅  /\  y  e. 𝔅 )  ->  ( x  X.  y )  C_  ( RR  X.  RR ) )
8 vex 3203 . . . . . . 7  |-  x  e. 
_V
9 vex 3203 . . . . . . 7  |-  y  e. 
_V
108, 9xpex 6962 . . . . . 6  |-  ( x  X.  y )  e. 
_V
1110elpw 4164 . . . . 5  |-  ( ( x  X.  y )  e.  ~P ( RR 
X.  RR )  <->  ( x  X.  y )  C_  ( RR  X.  RR ) )
127, 11sylibr 224 . . . 4  |-  ( ( x  e. 𝔅  /\  y  e. 𝔅 )  ->  ( x  X.  y )  e.  ~P ( RR  X.  RR ) )
1312rgen2a 2977 . . 3  |-  A. x  e. 𝔅  A. y  e. 𝔅  ( x  X.  y
)  e.  ~P ( RR  X.  RR )
14 eqid 2622 . . . 4  |-  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  =  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )
1514rnmpt2ss 29473 . . 3  |-  ( A. x  e. 𝔅  A. y  e. 𝔅  ( x  X.  y
)  e.  ~P ( RR  X.  RR )  ->  ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  C_  ~P ( RR  X.  RR ) )
1613, 15ax-mp 5 . 2  |-  ran  (
x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  C_  ~P ( RR  X.  RR )
17 unibrsiga 30249 . . . . . 6  |-  U.𝔅  =  RR
18 brsigarn 30247 . . . . . . 7  |- 𝔅  e.  (sigAlgebra `  RR )
19 elrnsiga 30189 . . . . . . 7  |-  (𝔅  e.  (sigAlgebra `  RR )  -> 𝔅  e.  U. ran sigAlgebra )
20 unielsiga 30191 . . . . . . 7  |-  (𝔅  e.  U. ran sigAlgebra  ->  U.𝔅  e. 𝔅 )
2118, 19, 20mp2b 10 . . . . . 6  |-  U.𝔅  e. 𝔅
2217, 21eqeltrri 2698 . . . . 5  |-  RR  e. 𝔅
23 eqid 2622 . . . . 5  |-  ( RR 
X.  RR )  =  ( RR  X.  RR )
24 xpeq1 5128 . . . . . . 7  |-  ( x  =  RR  ->  (
x  X.  y )  =  ( RR  X.  y ) )
2524eqeq2d 2632 . . . . . 6  |-  ( x  =  RR  ->  (
( RR  X.  RR )  =  ( x  X.  y )  <->  ( RR  X.  RR )  =  ( RR  X.  y ) ) )
26 xpeq2 5129 . . . . . . 7  |-  ( y  =  RR  ->  ( RR  X.  y )  =  ( RR  X.  RR ) )
2726eqeq2d 2632 . . . . . 6  |-  ( y  =  RR  ->  (
( RR  X.  RR )  =  ( RR  X.  y )  <->  ( RR  X.  RR )  =  ( RR  X.  RR ) ) )
2825, 27rspc2ev 3324 . . . . 5  |-  ( ( RR  e. 𝔅  /\  RR  e. 𝔅  /\  ( RR  X.  RR )  =  ( RR  X.  RR ) )  ->  E. x  e. 𝔅  E. y  e. 𝔅  ( RR  X.  RR )  =  ( x  X.  y ) )
2922, 22, 23, 28mp3an 1424 . . . 4  |-  E. x  e. 𝔅  E. y  e. 𝔅  ( RR  X.  RR )  =  ( x  X.  y )
3014, 10elrnmpt2 6773 . . . 4  |-  ( ( RR  X.  RR )  e.  ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  <->  E. x  e. 𝔅  E. y  e. 𝔅  ( RR  X.  RR )  =  ( x  X.  y ) )
3129, 30mpbir 221 . . 3  |-  ( RR 
X.  RR )  e. 
ran  ( x  e. 𝔅 , 
y  e. 𝔅 
|->  ( x  X.  y
) )
32 elpwuni 4616 . . 3  |-  ( ( RR  X.  RR )  e.  ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  ->  ( ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  C_  ~P ( RR  X.  RR ) 
<-> 
U. ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  =  ( RR  X.  RR ) ) )
3331, 32ax-mp 5 . 2  |-  ( ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  C_  ~P ( RR  X.  RR ) 
<-> 
U. ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  =  ( RR  X.  RR ) )
3416, 33mpbi 220 1  |-  U. ran  ( x  e. 𝔅 ,  y  e. 𝔅 
|->  ( x  X.  y
) )  =  ( RR  X.  RR )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   U.cuni 4436    X. cxp 5112   ran crn 5115   ` cfv 5888    |-> cmpt2 6652   RRcr 9935  sigAlgebracsiga 30170  𝔅cbrsiga 30244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-topgen 16104  df-top 20699  df-bases 20750  df-siga 30171  df-sigagen 30202  df-brsiga 30245
This theorem is referenced by:  sxbrsigalem5  30350  sxbrsiga  30352
  Copyright terms: Public domain W3C validator