MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofn Structured version   Visualization version   Unicode version

Theorem isofn 16435
Description: The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofn  |-  ( C  e.  Cat  ->  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )

Proof of Theorem isofn
Dummy variables  c  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7097 . . . . . 6  |-  ( x  e.  _V  ->  dom  x  e.  _V )
21adantl 482 . . . . 5  |-  ( ( C  e.  Cat  /\  x  e.  _V )  ->  dom  x  e.  _V )
32ralrimiva 2966 . . . 4  |-  ( C  e.  Cat  ->  A. x  e.  _V  dom  x  e. 
_V )
4 eqid 2622 . . . . 5  |-  ( x  e.  _V  |->  dom  x
)  =  ( x  e.  _V  |->  dom  x
)
54fnmpt 6020 . . . 4  |-  ( A. x  e.  _V  dom  x  e.  _V  ->  ( x  e.  _V  |->  dom  x )  Fn  _V )
63, 5syl 17 . . 3  |-  ( C  e.  Cat  ->  (
x  e.  _V  |->  dom  x )  Fn  _V )
7 ovex 6678 . . . . . . . 8  |-  ( x (Sect `  C )
y )  e.  _V
87inex1 4799 . . . . . . 7  |-  ( ( x (Sect `  C
) y )  i^i  `' ( y (Sect `  C ) x ) )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( C  e.  Cat  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) ) )  ->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) )  e.  _V )
109ralrimivva 2971 . . . . 5  |-  ( C  e.  Cat  ->  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  C
) ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) )  e.  _V )
11 eqid 2622 . . . . . 6  |-  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )
1211fnmpt2 7238 . . . . 5  |-  ( A. x  e.  ( Base `  C ) A. y  e.  ( Base `  C
) ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) )  e.  _V  ->  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
1310, 12syl 17 . . . 4  |-  ( C  e.  Cat  ->  (
x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
14 df-inv 16408 . . . . . . 7  |- Inv  =  ( c  e.  Cat  |->  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) ) )
1514a1i 11 . . . . . 6  |-  ( C  e.  Cat  -> Inv  =  ( c  e.  Cat  |->  ( x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) ) ) )
16 fveq2 6191 . . . . . . . 8  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
17 fveq2 6191 . . . . . . . . . 10  |-  ( c  =  C  ->  (Sect `  c )  =  (Sect `  C ) )
1817oveqd 6667 . . . . . . . . 9  |-  ( c  =  C  ->  (
x (Sect `  c
) y )  =  ( x (Sect `  C ) y ) )
1917oveqd 6667 . . . . . . . . . 10  |-  ( c  =  C  ->  (
y (Sect `  c
) x )  =  ( y (Sect `  C ) x ) )
2019cnveqd 5298 . . . . . . . . 9  |-  ( c  =  C  ->  `' ( y (Sect `  c ) x )  =  `' ( y (Sect `  C )
x ) )
2118, 20ineq12d 3815 . . . . . . . 8  |-  ( c  =  C  ->  (
( x (Sect `  c ) y )  i^i  `' ( y (Sect `  c )
x ) )  =  ( ( x (Sect `  C ) y )  i^i  `' ( y (Sect `  C )
x ) ) )
2216, 16, 21mpt2eq123dv 6717 . . . . . . 7  |-  ( c  =  C  ->  (
x  e.  ( Base `  c ) ,  y  e.  ( Base `  c
)  |->  ( ( x (Sect `  c )
y )  i^i  `' ( y (Sect `  c ) x ) ) )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) ) )
2322adantl 482 . . . . . 6  |-  ( ( C  e.  Cat  /\  c  =  C )  ->  ( x  e.  (
Base `  c ) ,  y  e.  ( Base `  c )  |->  ( ( x (Sect `  c ) y )  i^i  `' ( y (Sect `  c )
x ) ) )  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) ) )
24 id 22 . . . . . 6  |-  ( C  e.  Cat  ->  C  e.  Cat )
25 fvex 6201 . . . . . . . 8  |-  ( Base `  C )  e.  _V
2625, 25pm3.2i 471 . . . . . . 7  |-  ( (
Base `  C )  e.  _V  /\  ( Base `  C )  e.  _V )
2711mpt2exg 7245 . . . . . . 7  |-  ( ( ( Base `  C
)  e.  _V  /\  ( Base `  C )  e.  _V )  ->  (
x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  e.  _V )
2826, 27mp1i 13 . . . . . 6  |-  ( C  e.  Cat  ->  (
x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  e.  _V )
2915, 23, 24, 28fvmptd 6288 . . . . 5  |-  ( C  e.  Cat  ->  (Inv `  C )  =  ( x  e.  ( Base `  C ) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) ) )
3029fneq1d 5981 . . . 4  |-  ( C  e.  Cat  ->  (
(Inv `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) )  <->  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( ( x (Sect `  C )
y )  i^i  `' ( y (Sect `  C ) x ) ) )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) ) )
3113, 30mpbird 247 . . 3  |-  ( C  e.  Cat  ->  (Inv `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) ) )
32 ssv 3625 . . . 4  |-  ran  (Inv `  C )  C_  _V
3332a1i 11 . . 3  |-  ( C  e.  Cat  ->  ran  (Inv `  C )  C_  _V )
34 fnco 5999 . . 3  |-  ( ( ( x  e.  _V  |->  dom  x )  Fn  _V  /\  (Inv `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  ran  (Inv `  C )  C_ 
_V )  ->  (
( x  e.  _V  |->  dom  x )  o.  (Inv `  C ) )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
356, 31, 33, 34syl3anc 1326 . 2  |-  ( C  e.  Cat  ->  (
( x  e.  _V  |->  dom  x )  o.  (Inv `  C ) )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
36 isofval 16417 . . 3  |-  ( C  e.  Cat  ->  (  Iso  `  C )  =  ( ( x  e. 
_V  |->  dom  x )  o.  (Inv `  C )
) )
3736fneq1d 5981 . 2  |-  ( C  e.  Cat  ->  (
(  Iso  `  C )  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  <-> 
( ( x  e. 
_V  |->  dom  x )  o.  (Inv `  C )
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) ) )
3835, 37mpbird 247 1  |-  ( C  e.  Cat  ->  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118    Fn wfn 5883   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   Catccat 16325  Sectcsect 16404  Invcinv 16405    Iso ciso 16406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-inv 16408  df-iso 16409
This theorem is referenced by:  brcic  16458  ciclcl  16462  cicrcl  16463  cicer  16466
  Copyright terms: Public domain W3C validator