| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme3g | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 35523 and cdleme3 35524. (Contributed by NM, 7-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme1.l |
|
| cdleme1.j |
|
| cdleme1.m |
|
| cdleme1.a |
|
| cdleme1.h |
|
| cdleme1.u |
|
| cdleme1.f |
|
| cdleme3.3 |
|
| Ref | Expression |
|---|---|
| cdleme3g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.l |
. . . 4
| |
| 2 | cdleme1.j |
. . . 4
| |
| 3 | cdleme1.m |
. . . 4
| |
| 4 | cdleme1.a |
. . . 4
| |
| 5 | cdleme1.h |
. . . 4
| |
| 6 | cdleme1.u |
. . . 4
| |
| 7 | cdleme1.f |
. . . 4
| |
| 8 | cdleme3.3 |
. . . 4
| |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3d 35518 |
. . 3
|
| 10 | simp1l 1085 |
. . . . 5
| |
| 11 | hllat 34650 |
. . . . 5
| |
| 12 | 10, 11 | syl 17 |
. . . 4
|
| 13 | simp23l 1182 |
. . . . 5
| |
| 14 | simp1 1061 |
. . . . . 6
| |
| 15 | simp21 1094 |
. . . . . 6
| |
| 16 | simp22l 1180 |
. . . . . 6
| |
| 17 | simp3l 1089 |
. . . . . 6
| |
| 18 | 1, 2, 3, 4, 5, 6 | lhpat2 35331 |
. . . . . 6
|
| 19 | 14, 15, 16, 17, 18 | syl112anc 1330 |
. . . . 5
|
| 20 | eqid 2622 |
. . . . . 6
| |
| 21 | 20, 2, 4 | hlatjcl 34653 |
. . . . 5
|
| 22 | 10, 13, 19, 21 | syl3anc 1326 |
. . . 4
|
| 23 | simp3r 1090 |
. . . . . . 7
| |
| 24 | 13, 23 | jca 554 |
. . . . . 6
|
| 25 | 1, 2, 3, 4, 5, 6, 7, 8 | cdleme3e 35519 |
. . . . . 6
|
| 26 | 14, 15, 16, 24, 25 | syl13anc 1328 |
. . . . 5
|
| 27 | 20, 2, 4 | hlatjcl 34653 |
. . . . 5
|
| 28 | 10, 16, 26, 27 | syl3anc 1326 |
. . . 4
|
| 29 | 20, 1, 3 | latmle2 17077 |
. . . 4
|
| 30 | 12, 22, 28, 29 | syl3anc 1326 |
. . 3
|
| 31 | 9, 30 | syl5eqbr 4688 |
. 2
|
| 32 | simp22r 1181 |
. . 3
| |
| 33 | simp23 1096 |
. . . . . 6
| |
| 34 | simp3 1063 |
. . . . . 6
| |
| 35 | 1, 2, 3, 4, 5, 6, 8 | cdleme0e 35504 |
. . . . . 6
|
| 36 | 14, 15, 16, 33, 34, 35 | syl131anc 1339 |
. . . . 5
|
| 37 | 1, 2, 4 | hlatexch2 34682 |
. . . . 5
|
| 38 | 10, 19, 16, 26, 36, 37 | syl131anc 1339 |
. . . 4
|
| 39 | simp21l 1178 |
. . . . . . . . 9
| |
| 40 | 20, 2, 4 | hlatjcl 34653 |
. . . . . . . . 9
|
| 41 | 10, 39, 16, 40 | syl3anc 1326 |
. . . . . . . 8
|
| 42 | simp1r 1086 |
. . . . . . . . 9
| |
| 43 | 20, 5 | lhpbase 35284 |
. . . . . . . . 9
|
| 44 | 42, 43 | syl 17 |
. . . . . . . 8
|
| 45 | 20, 1, 3 | latmle2 17077 |
. . . . . . . 8
|
| 46 | 12, 41, 44, 45 | syl3anc 1326 |
. . . . . . 7
|
| 47 | 6, 46 | syl5eqbr 4688 |
. . . . . 6
|
| 48 | 20, 2, 4 | hlatjcl 34653 |
. . . . . . . . 9
|
| 49 | 10, 39, 13, 48 | syl3anc 1326 |
. . . . . . . 8
|
| 50 | 20, 1, 3 | latmle2 17077 |
. . . . . . . 8
|
| 51 | 12, 49, 44, 50 | syl3anc 1326 |
. . . . . . 7
|
| 52 | 8, 51 | syl5eqbr 4688 |
. . . . . 6
|
| 53 | 20, 4 | atbase 34576 |
. . . . . . . 8
|
| 54 | 19, 53 | syl 17 |
. . . . . . 7
|
| 55 | 20, 4 | atbase 34576 |
. . . . . . . 8
|
| 56 | 26, 55 | syl 17 |
. . . . . . 7
|
| 57 | 20, 1, 2 | latjle12 17062 |
. . . . . . 7
|
| 58 | 12, 54, 56, 44, 57 | syl13anc 1328 |
. . . . . 6
|
| 59 | 47, 52, 58 | mpbi2and 956 |
. . . . 5
|
| 60 | 20, 4 | atbase 34576 |
. . . . . . 7
|
| 61 | 16, 60 | syl 17 |
. . . . . 6
|
| 62 | 20, 2, 4 | hlatjcl 34653 |
. . . . . . 7
|
| 63 | 10, 19, 26, 62 | syl3anc 1326 |
. . . . . 6
|
| 64 | 20, 1 | lattr 17056 |
. . . . . 6
|
| 65 | 12, 61, 63, 44, 64 | syl13anc 1328 |
. . . . 5
|
| 66 | 59, 65 | mpan2d 710 |
. . . 4
|
| 67 | 38, 66 | syld 47 |
. . 3
|
| 68 | 32, 67 | mtod 189 |
. 2
|
| 69 | nbrne2 4673 |
. 2
| |
| 70 | 31, 68, 69 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: cdleme3 35524 cdleme16b 35566 cdleme35a 35736 |
| Copyright terms: Public domain | W3C validator |