Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Structured version   Visualization version   Unicode version

Theorem cdleme0moN 35512
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0moN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    P, r    Q, r    R, r    U, r
Allowed substitution hints:    H( r)    K( r)   
.<_ ( r)    ./\ ( r)    W( r)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1183 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  R  .<_  W )
2 neanior 2886 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
3 simpl33 1144 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )
4 simp23l 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  R  e.  A
)
54adantr 481 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  e.  A )
6 simprl 794 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  P )
7 simprr 796 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  Q )
8 simpl32 1143 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  ( P  .\/  Q ) )
9 simpl1l 1112 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  HL )
10 hlcvl 34646 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  CvLat )
12 simp21l 1178 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
1312adantr 481 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  e.  A )
14 simp22l 1180 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
1514adantr 481 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  Q  e.  A )
16 simpl31 1142 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  =/=  Q )
17 cdleme0.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
18 cdleme0.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
19 cdleme0.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
2017, 18, 19cvlsupr2 34630 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2111, 13, 15, 5, 16, 20syl131anc 1339 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( ( P  .\/  R )  =  ( Q 
.\/  R )  <->  ( R  =/=  P  /\  R  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) ) )
226, 7, 8, 21mpbir3and 1245 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  R
)  =  ( Q 
.\/  R ) )
23 simp1l 1085 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
24 simp1r 1086 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  W  e.  H
)
25 simp21r 1179 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  P  .<_  W )
26 simp31 1097 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
27 cdleme0.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
28 cdleme0.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
29 cdleme0.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
3018, 19, 27, 17, 28, 29lhpat2 35331 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
3123, 24, 12, 25, 14, 26, 30syl222anc 1342 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  U  e.  A
)
3231adantr 481 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  e.  A )
33 simpl1 1064 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
34 simpl21 1139 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
35 simpl22 1140 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
3618, 19, 27, 17, 28, 29cdleme02N 35509 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  (
( P  .\/  U
)  =  ( Q 
.\/  U )  /\  U  .<_  W ) )
3736simpld 475 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( P  .\/  U )  =  ( Q  .\/  U
) )
3833, 34, 35, 16, 37syl121anc 1331 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  U
)  =  ( Q 
.\/  U ) )
39 df-rmo 2920 . . . . . . 7  |-  ( E* r  e.  A  ( P  .\/  r )  =  ( Q  .\/  r )  <->  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) )
40 oveq2 6658 . . . . . . . . 9  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
41 oveq2 6658 . . . . . . . . 9  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
4240, 41eqeq12d 2637 . . . . . . . 8  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
43 oveq2 6658 . . . . . . . . 9  |-  ( r  =  U  ->  ( P  .\/  r )  =  ( P  .\/  U
) )
44 oveq2 6658 . . . . . . . . 9  |-  ( r  =  U  ->  ( Q  .\/  r )  =  ( Q  .\/  U
) )
4543, 44eqeq12d 2637 . . . . . . . 8  |-  ( r  =  U  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  U )  =  ( Q  .\/  U ) ) )
4642, 45rmoi 3530 . . . . . . 7  |-  ( ( E* r  e.  A  ( P  .\/  r )  =  ( Q  .\/  r )  /\  ( R  e.  A  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( U  e.  A  /\  ( P  .\/  U )  =  ( Q  .\/  U ) ) )  ->  R  =  U )
4739, 46syl3an1br 1365 . . . . . 6  |-  ( ( E* r ( r  e.  A  /\  ( P  .\/  r )  =  ( Q  .\/  r
) )  /\  ( R  e.  A  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( U  e.  A  /\  ( P  .\/  U )  =  ( Q  .\/  U ) ) )  ->  R  =  U )
483, 5, 22, 32, 38, 47syl122anc 1335 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =  U )
4936simprd 479 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  U  .<_  W )
5033, 34, 35, 16, 49syl121anc 1331 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  .<_  W )
5148, 50eqbrtrd 4675 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  W )
5251ex 450 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  R  .<_  W ) )
532, 52syl5bir 233 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( -.  ( R  =  P  \/  R  =  Q )  ->  R  .<_  W )
)
541, 53mt3d 140 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E*wmo 2471    =/= wne 2794   E*wrmo 2915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   CvLatclc 34552   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator