| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme35fnpq | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013.) |
| Ref | Expression |
|---|---|
| cdleme35.l |
|
| cdleme35.j |
|
| cdleme35.m |
|
| cdleme35.a |
|
| cdleme35.h |
|
| cdleme35.u |
|
| cdleme35.f |
|
| Ref | Expression |
|---|---|
| cdleme35fnpq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. 2
| |
| 2 | simp11 1091 |
. . . . 5
| |
| 3 | simp12l 1174 |
. . . . 5
| |
| 4 | simp13l 1176 |
. . . . 5
| |
| 5 | cdleme35.l |
. . . . . 6
| |
| 6 | cdleme35.j |
. . . . . 6
| |
| 7 | cdleme35.m |
. . . . . 6
| |
| 8 | cdleme35.a |
. . . . . 6
| |
| 9 | cdleme35.h |
. . . . . 6
| |
| 10 | cdleme35.u |
. . . . . 6
| |
| 11 | 5, 6, 7, 8, 9, 10 | cdlemeulpq 35507 |
. . . . 5
|
| 12 | 2, 3, 4, 11 | syl12anc 1324 |
. . . 4
|
| 13 | simp11l 1172 |
. . . . . . 7
| |
| 14 | hllat 34650 |
. . . . . . 7
| |
| 15 | 13, 14 | syl 17 |
. . . . . 6
|
| 16 | simp2rl 1130 |
. . . . . . 7
| |
| 17 | cdleme35.f |
. . . . . . . 8
| |
| 18 | eqid 2622 |
. . . . . . . 8
| |
| 19 | 5, 6, 7, 8, 9, 10, 17, 18 | cdleme1b 35513 |
. . . . . . 7
|
| 20 | 2, 3, 4, 16, 19 | syl13anc 1328 |
. . . . . 6
|
| 21 | 5, 6, 7, 8, 9, 10, 18 | cdleme0aa 35497 |
. . . . . . 7
|
| 22 | 2, 3, 4, 21 | syl3anc 1326 |
. . . . . 6
|
| 23 | 18, 6, 8 | hlatjcl 34653 |
. . . . . . 7
|
| 24 | 13, 3, 4, 23 | syl3anc 1326 |
. . . . . 6
|
| 25 | 18, 5, 6 | latjle12 17062 |
. . . . . 6
|
| 26 | 15, 20, 22, 24, 25 | syl13anc 1328 |
. . . . 5
|
| 27 | 26 | biimpd 219 |
. . . 4
|
| 28 | 12, 27 | mpan2d 710 |
. . 3
|
| 29 | 18, 8 | atbase 34576 |
. . . . . . 7
|
| 30 | 16, 29 | syl 17 |
. . . . . 6
|
| 31 | 18, 5, 6 | latlej1 17060 |
. . . . . 6
|
| 32 | 15, 30, 22, 31 | syl3anc 1326 |
. . . . 5
|
| 33 | 5, 6, 7, 8, 9, 10, 17 | cdleme35a 35736 |
. . . . 5
|
| 34 | 32, 33 | breqtrrd 4681 |
. . . 4
|
| 35 | 18, 6 | latjcl 17051 |
. . . . . 6
|
| 36 | 15, 20, 22, 35 | syl3anc 1326 |
. . . . 5
|
| 37 | 18, 5 | lattr 17056 |
. . . . 5
|
| 38 | 15, 30, 36, 24, 37 | syl13anc 1328 |
. . . 4
|
| 39 | 34, 38 | mpand 711 |
. . 3
|
| 40 | 28, 39 | syld 47 |
. 2
|
| 41 | 1, 40 | mtod 189 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 |
| This theorem is referenced by: cdleme35sn3a 35747 cdleme46frvlpq 35792 |
| Copyright terms: Public domain | W3C validator |