Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme3c Structured version   Visualization version   Unicode version

Theorem cdleme3c 35517
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 35523 and cdleme3 35524. (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme3c.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
cdleme3c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  .0.  )

Proof of Theorem cdleme3c
StepHypRef Expression
1 simpll 790 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 hllat 34650 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 762 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
4 simpr3l 1122 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A
)
5 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 34576 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
84, 7syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  (
Base `  K )
)
9 hlop 34649 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
109ad2antrr 762 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OP )
11 cdleme3c.z . . . . . . 7  |-  .0.  =  ( 0. `  K )
125, 11op0cl 34471 . . . . . 6  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
1310, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  .0.  e.  ( Base `  K ) )
14 cdleme1.j . . . . . 6  |-  .\/  =  ( join `  K )
155, 14latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  .0.  e.  ( Base `  K
) )  ->  ( R  .\/  .0.  )  e.  ( Base `  K
) )
163, 8, 13, 15syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  e.  ( Base `  K ) )
17 simpl 473 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
18 simpr1l 1118 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A
)
19 simpr2l 1120 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A
)
20 cdleme1.l . . . . . . 7  |-  .<_  =  ( le `  K )
21 cdleme1.m . . . . . . 7  |-  ./\  =  ( meet `  K )
22 cdleme1.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
23 cdleme1.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
24 cdleme1.f . . . . . . 7  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2520, 14, 21, 6, 22, 23, 24, 5cdleme1b 35513 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  ( Base `  K ) )
2617, 18, 19, 4, 25syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  e.  (
Base `  K )
)
275, 14latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  F  e.  ( Base `  K
) )  ->  ( R  .\/  F )  e.  ( Base `  K
) )
283, 8, 26, 27syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  e.  ( Base `  K ) )
295, 6atbase 34576 . . . . . . . . . . . 12  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3018, 29syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  (
Base `  K )
)
315, 6atbase 34576 . . . . . . . . . . . 12  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3219, 31syl 17 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  (
Base `  K )
)
335, 14latjcl 17051 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
343, 30, 32, 33syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K ) )
355, 22lhpbase 35284 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3635ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  (
Base `  K )
)
375, 20, 21latmle2 17077 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
383, 34, 36, 37syl3anc 1326 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P 
.\/  Q )  ./\  W )  .<_  W )
3923, 38syl5eqbr 4688 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
40 simpr3r 1123 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  -.  R  .<_  W )
41 nbrne2 4673 . . . . . . . 8  |-  ( ( U  .<_  W  /\  -.  R  .<_  W )  ->  U  =/=  R
)
4239, 40, 41syl2anc 693 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  =/=  R
)
4342necomd 2849 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  =/=  U
)
4420, 14, 21, 6, 22, 23lhpat2 35331 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
45443adant3r3 1276 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  A
)
46 eqid 2622 . . . . . . . 8  |-  (  <o  `  K )  =  ( 
<o  `  K )
4714, 46, 6atcvr1 34703 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  U  e.  A )  ->  ( R  =/=  U  <->  R (  <o  `  K )
( R  .\/  U
) ) )
481, 4, 45, 47syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  =/= 
U  <->  R (  <o  `  K
) ( R  .\/  U ) ) )
4943, 48mpbid 222 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R (  <o  `  K ) ( R 
.\/  U ) )
50 hlol 34648 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
5150ad2antrr 762 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OL )
525, 14, 11olj01 34512 . . . . . 6  |-  ( ( K  e.  OL  /\  R  e.  ( Base `  K ) )  -> 
( R  .\/  .0.  )  =  R )
5351, 8, 52syl2anc 693 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  =  R
)
54 simpr3 1069 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
5520, 14, 21, 6, 22, 23, 24cdleme1 35514 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
5617, 18, 19, 54, 55syl13anc 1328 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R 
.\/  U ) )
5749, 53, 563brtr4d 4685 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  ) (  <o  `  K
) ( R  .\/  F ) )
585, 46cvrne 34568 . . . 4  |-  ( ( ( K  e.  HL  /\  ( R  .\/  .0.  )  e.  ( Base `  K )  /\  ( R  .\/  F )  e.  ( Base `  K
) )  /\  ( R  .\/  .0.  ) ( 
<o  `  K ) ( R  .\/  F ) )  ->  ( R  .\/  .0.  )  =/=  ( R  .\/  F ) )
591, 16, 28, 57, 58syl31anc 1329 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  .0.  )  =/=  ( R  .\/  F ) )
60 oveq2 6658 . . . 4  |-  (  .0.  =  F  ->  ( R  .\/  .0.  )  =  ( R  .\/  F
) )
6160necon3i 2826 . . 3  |-  ( ( R  .\/  .0.  )  =/=  ( R  .\/  F
)  ->  .0.  =/=  F )
6259, 61syl 17 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  .0.  =/=  F
)
6362necomd 2849 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q
)  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  F  =/=  .0.  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   0.cp0 17037   Latclat 17045   OPcops 34459   OLcol 34461    <o ccvr 34549   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by:  cdleme3h  35522
  Copyright terms: Public domain W3C validator