| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme1 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma E
in [Crawley] p. 113. |
| Ref | Expression |
|---|---|
| cdleme1.l |
|
| cdleme1.j |
|
| cdleme1.m |
|
| cdleme1.a |
|
| cdleme1.h |
|
| cdleme1.u |
|
| cdleme1.f |
|
| Ref | Expression |
|---|---|
| cdleme1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 790 |
. . . 4
| |
| 2 | simpr3l 1122 |
. . . 4
| |
| 3 | hllat 34650 |
. . . . . 6
| |
| 4 | 3 | ad2antrr 762 |
. . . . 5
|
| 5 | eqid 2622 |
. . . . . . 7
| |
| 6 | cdleme1.a |
. . . . . . 7
| |
| 7 | 5, 6 | atbase 34576 |
. . . . . 6
|
| 8 | 2, 7 | syl 17 |
. . . . 5
|
| 9 | cdleme1.u |
. . . . . 6
| |
| 10 | simpr1 1067 |
. . . . . . . . 9
| |
| 11 | 5, 6 | atbase 34576 |
. . . . . . . . 9
|
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
|
| 13 | simpr2 1068 |
. . . . . . . . 9
| |
| 14 | 5, 6 | atbase 34576 |
. . . . . . . . 9
|
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
|
| 16 | cdleme1.j |
. . . . . . . . 9
| |
| 17 | 5, 16 | latjcl 17051 |
. . . . . . . 8
|
| 18 | 4, 12, 15, 17 | syl3anc 1326 |
. . . . . . 7
|
| 19 | cdleme1.h |
. . . . . . . . 9
| |
| 20 | 5, 19 | lhpbase 35284 |
. . . . . . . 8
|
| 21 | 20 | ad2antlr 763 |
. . . . . . 7
|
| 22 | cdleme1.m |
. . . . . . . 8
| |
| 23 | 5, 22 | latmcl 17052 |
. . . . . . 7
|
| 24 | 4, 18, 21, 23 | syl3anc 1326 |
. . . . . 6
|
| 25 | 9, 24 | syl5eqel 2705 |
. . . . 5
|
| 26 | 5, 16 | latjcl 17051 |
. . . . 5
|
| 27 | 4, 8, 25, 26 | syl3anc 1326 |
. . . 4
|
| 28 | 5, 16 | latjcl 17051 |
. . . . . . 7
|
| 29 | 4, 12, 8, 28 | syl3anc 1326 |
. . . . . 6
|
| 30 | 5, 22 | latmcl 17052 |
. . . . . 6
|
| 31 | 4, 29, 21, 30 | syl3anc 1326 |
. . . . 5
|
| 32 | 5, 16 | latjcl 17051 |
. . . . 5
|
| 33 | 4, 15, 31, 32 | syl3anc 1326 |
. . . 4
|
| 34 | cdleme1.l |
. . . . . 6
| |
| 35 | 5, 34, 16 | latlej1 17060 |
. . . . 5
|
| 36 | 4, 8, 25, 35 | syl3anc 1326 |
. . . 4
|
| 37 | 5, 34, 16, 22, 6 | atmod3i1 35150 |
. . . 4
|
| 38 | 1, 2, 27, 33, 36, 37 | syl131anc 1339 |
. . 3
|
| 39 | 5, 34, 16 | latlej2 17061 |
. . . . . . . . 9
|
| 40 | 4, 12, 8, 39 | syl3anc 1326 |
. . . . . . . 8
|
| 41 | 5, 34, 16, 22, 6 | atmod3i1 35150 |
. . . . . . . 8
|
| 42 | 1, 2, 29, 21, 40, 41 | syl131anc 1339 |
. . . . . . 7
|
| 43 | eqid 2622 |
. . . . . . . . . 10
| |
| 44 | 34, 16, 43, 6, 19 | lhpjat2 35307 |
. . . . . . . . 9
|
| 45 | 44 | 3ad2antr3 1228 |
. . . . . . . 8
|
| 46 | 45 | oveq2d 6666 |
. . . . . . 7
|
| 47 | hlol 34648 |
. . . . . . . . 9
| |
| 48 | 47 | ad2antrr 762 |
. . . . . . . 8
|
| 49 | 5, 22, 43 | olm11 34514 |
. . . . . . . 8
|
| 50 | 48, 29, 49 | syl2anc 693 |
. . . . . . 7
|
| 51 | 42, 46, 50 | 3eqtrd 2660 |
. . . . . 6
|
| 52 | 51 | oveq2d 6666 |
. . . . 5
|
| 53 | 5, 16 | latj12 17096 |
. . . . . 6
|
| 54 | 4, 15, 8, 31, 53 | syl13anc 1328 |
. . . . 5
|
| 55 | 5, 16 | latj13 17098 |
. . . . . 6
|
| 56 | 4, 15, 12, 8, 55 | syl13anc 1328 |
. . . . 5
|
| 57 | 52, 54, 56 | 3eqtr3rd 2665 |
. . . 4
|
| 58 | 57 | oveq2d 6666 |
. . 3
|
| 59 | 34, 16, 22, 6, 19, 9 | cdlemeulpq 35507 |
. . . . . 6
|
| 60 | 59 | 3adantr3 1222 |
. . . . 5
|
| 61 | 5, 34, 16 | latjlej2 17066 |
. . . . . 6
|
| 62 | 4, 25, 18, 8, 61 | syl13anc 1328 |
. . . . 5
|
| 63 | 60, 62 | mpd 15 |
. . . 4
|
| 64 | 5, 16 | latjcl 17051 |
. . . . . 6
|
| 65 | 4, 8, 18, 64 | syl3anc 1326 |
. . . . 5
|
| 66 | 5, 34, 22 | latleeqm1 17079 |
. . . . 5
|
| 67 | 4, 27, 65, 66 | syl3anc 1326 |
. . . 4
|
| 68 | 63, 67 | mpbid 222 |
. . 3
|
| 69 | 38, 58, 68 | 3eqtr2rd 2663 |
. 2
|
| 70 | cdleme1.f |
. . 3
| |
| 71 | 70 | oveq2i 6661 |
. 2
|
| 72 | 69, 71 | syl6reqr 2675 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 |
| This theorem is referenced by: cdleme2 35515 cdleme3b 35516 cdleme3c 35517 cdleme5 35527 cdleme11 35557 cdleme12 35558 cdleme16c 35567 cdleme20g 35603 cdleme35a 35736 cdleme36a 35748 |
| Copyright terms: Public domain | W3C validator |