| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemf2 | Structured version Visualization version Unicode version | ||
| Description: Part of Lemma F in [Crawley] p. 116. (Contributed by NM, 12-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemf1.l |
|
| cdlemf1.j |
|
| cdlemf1.a |
|
| cdlemf1.h |
|
| cdlemf2.m |
|
| Ref | Expression |
|---|---|
| cdlemf2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemf1.l |
. . . 4
| |
| 2 | cdlemf1.a |
. . . 4
| |
| 3 | cdlemf1.h |
. . . 4
| |
| 4 | 1, 2, 3 | lhpexnle 35292 |
. . 3
|
| 5 | 4 | adantr 481 |
. 2
|
| 6 | cdlemf1.j |
. . . . . . 7
| |
| 7 | 1, 6, 2, 3 | cdlemf1 35849 |
. . . . . 6
|
| 8 | simpr1r 1119 |
. . . . . . . . . 10
| |
| 9 | simpr32 1152 |
. . . . . . . . . 10
| |
| 10 | simpr33 1153 |
. . . . . . . . . . . 12
| |
| 11 | simplrr 801 |
. . . . . . . . . . . 12
| |
| 12 | hllat 34650 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | ad3antrrr 766 |
. . . . . . . . . . . . 13
|
| 14 | simplrl 800 |
. . . . . . . . . . . . . 14
| |
| 15 | eqid 2622 |
. . . . . . . . . . . . . . 15
| |
| 16 | 15, 2 | atbase 34576 |
. . . . . . . . . . . . . 14
|
| 17 | 14, 16 | syl 17 |
. . . . . . . . . . . . 13
|
| 18 | simplll 798 |
. . . . . . . . . . . . . 14
| |
| 19 | simpr1l 1118 |
. . . . . . . . . . . . . 14
| |
| 20 | simpr2 1068 |
. . . . . . . . . . . . . 14
| |
| 21 | 15, 6, 2 | hlatjcl 34653 |
. . . . . . . . . . . . . 14
|
| 22 | 18, 19, 20, 21 | syl3anc 1326 |
. . . . . . . . . . . . 13
|
| 23 | 15, 3 | lhpbase 35284 |
. . . . . . . . . . . . . 14
|
| 24 | 23 | ad3antlr 767 |
. . . . . . . . . . . . 13
|
| 25 | cdlemf2.m |
. . . . . . . . . . . . . 14
| |
| 26 | 15, 1, 25 | latlem12 17078 |
. . . . . . . . . . . . 13
|
| 27 | 13, 17, 22, 24, 26 | syl13anc 1328 |
. . . . . . . . . . . 12
|
| 28 | 10, 11, 27 | mpbi2and 956 |
. . . . . . . . . . 11
|
| 29 | hlatl 34647 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | ad3antrrr 766 |
. . . . . . . . . . . 12
|
| 31 | simpll 790 |
. . . . . . . . . . . . 13
| |
| 32 | simpr31 1151 |
. . . . . . . . . . . . 13
| |
| 33 | 1, 6, 25, 2, 3 | lhpat 35329 |
. . . . . . . . . . . . 13
|
| 34 | 31, 19, 8, 20, 32, 33 | syl122anc 1335 |
. . . . . . . . . . . 12
|
| 35 | 1, 2 | atcmp 34598 |
. . . . . . . . . . . 12
|
| 36 | 30, 14, 34, 35 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 37 | 28, 36 | mpbid 222 |
. . . . . . . . . 10
|
| 38 | 8, 9, 37 | jca31 557 |
. . . . . . . . 9
|
| 39 | 38 | 3exp2 1285 |
. . . . . . . 8
|
| 40 | 39 | 3impia 1261 |
. . . . . . 7
|
| 41 | 40 | reximdvai 3015 |
. . . . . 6
|
| 42 | 7, 41 | mpd 15 |
. . . . 5
|
| 43 | 42 | 3expia 1267 |
. . . 4
|
| 44 | 43 | expd 452 |
. . 3
|
| 45 | 44 | reximdvai 3015 |
. 2
|
| 46 | 5, 45 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: cdlemf 35851 |
| Copyright terms: Public domain | W3C validator |