| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemh2 | Structured version Visualization version Unicode version | ||
| Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemh.b |
|
| cdlemh.l |
|
| cdlemh.j |
|
| cdlemh.m |
|
| cdlemh.a |
|
| cdlemh.h |
|
| cdlemh.t |
|
| cdlemh.r |
|
| cdlemh.s |
|
| cdlemh.z |
|
| Ref | Expression |
|---|---|
| cdlemh2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11l 1172 |
. . . . 5
| |
| 2 | hlol 34648 |
. . . . 5
| |
| 3 | 1, 2 | syl 17 |
. . . 4
|
| 4 | hllat 34650 |
. . . . . 6
| |
| 5 | 1, 4 | syl 17 |
. . . . 5
|
| 6 | simp2ll 1128 |
. . . . . 6
| |
| 7 | cdlemh.b |
. . . . . . 7
| |
| 8 | cdlemh.a |
. . . . . . 7
| |
| 9 | 7, 8 | atbase 34576 |
. . . . . 6
|
| 10 | 6, 9 | syl 17 |
. . . . 5
|
| 11 | simp11r 1173 |
. . . . . . 7
| |
| 12 | 1, 11 | jca 554 |
. . . . . 6
|
| 13 | simp13 1093 |
. . . . . 6
| |
| 14 | cdlemh.h |
. . . . . . 7
| |
| 15 | cdlemh.t |
. . . . . . 7
| |
| 16 | cdlemh.r |
. . . . . . 7
| |
| 17 | 7, 14, 15, 16 | trlcl 35451 |
. . . . . 6
|
| 18 | 12, 13, 17 | syl2anc 693 |
. . . . 5
|
| 19 | cdlemh.j |
. . . . . 6
| |
| 20 | 7, 19 | latjcl 17051 |
. . . . 5
|
| 21 | 5, 10, 18, 20 | syl3anc 1326 |
. . . 4
|
| 22 | simp2rl 1130 |
. . . . . 6
| |
| 23 | 7, 8 | atbase 34576 |
. . . . . 6
|
| 24 | 22, 23 | syl 17 |
. . . . 5
|
| 25 | simp12 1092 |
. . . . . . . 8
| |
| 26 | 14, 15 | ltrncnv 35432 |
. . . . . . . 8
|
| 27 | 12, 25, 26 | syl2anc 693 |
. . . . . . 7
|
| 28 | 14, 15 | ltrnco 36007 |
. . . . . . 7
|
| 29 | 12, 13, 27, 28 | syl3anc 1326 |
. . . . . 6
|
| 30 | 7, 14, 15, 16 | trlcl 35451 |
. . . . . 6
|
| 31 | 12, 29, 30 | syl2anc 693 |
. . . . 5
|
| 32 | 7, 19 | latjcl 17051 |
. . . . 5
|
| 33 | 5, 24, 31, 32 | syl3anc 1326 |
. . . 4
|
| 34 | 7, 14 | lhpbase 35284 |
. . . . 5
|
| 35 | 11, 34 | syl 17 |
. . . 4
|
| 36 | cdlemh.m |
. . . . 5
| |
| 37 | 7, 36 | latmassOLD 34516 |
. . . 4
|
| 38 | 3, 21, 33, 35, 37 | syl13anc 1328 |
. . 3
|
| 39 | simp2r 1088 |
. . . . . . 7
| |
| 40 | cdlemh.l |
. . . . . . . 8
| |
| 41 | cdlemh.z |
. . . . . . . 8
| |
| 42 | 40, 36, 41, 8, 14 | lhpmat 35316 |
. . . . . . 7
|
| 43 | 12, 39, 42 | syl2anc 693 |
. . . . . 6
|
| 44 | 43 | oveq1d 6665 |
. . . . 5
|
| 45 | 40, 14, 15, 16 | trlle 35471 |
. . . . . . 7
|
| 46 | 12, 29, 45 | syl2anc 693 |
. . . . . 6
|
| 47 | 7, 40, 19, 36, 8 | atmod4i2 35153 |
. . . . . 6
|
| 48 | 1, 22, 31, 35, 46, 47 | syl131anc 1339 |
. . . . 5
|
| 49 | 7, 19, 41 | olj02 34513 |
. . . . . 6
|
| 50 | 3, 31, 49 | syl2anc 693 |
. . . . 5
|
| 51 | 44, 48, 50 | 3eqtr3rd 2665 |
. . . 4
|
| 52 | 51 | oveq2d 6666 |
. . 3
|
| 53 | simp2l 1087 |
. . . 4
| |
| 54 | 13, 27 | jca 554 |
. . . . 5
|
| 55 | simp33 1099 |
. . . . . . 7
| |
| 56 | 55 | necomd 2849 |
. . . . . 6
|
| 57 | 14, 15, 16 | trlcnv 35452 |
. . . . . . 7
|
| 58 | 12, 25, 57 | syl2anc 693 |
. . . . . 6
|
| 59 | 56, 58 | neeqtrrd 2868 |
. . . . 5
|
| 60 | simp31 1097 |
. . . . . 6
| |
| 61 | 7, 14, 15 | ltrncnvnid 35413 |
. . . . . 6
|
| 62 | 12, 25, 60, 61 | syl3anc 1326 |
. . . . 5
|
| 63 | 7, 14, 15, 16 | trlcone 36016 |
. . . . 5
|
| 64 | 12, 54, 59, 62, 63 | syl112anc 1330 |
. . . 4
|
| 65 | simp32 1098 |
. . . . 5
| |
| 66 | 7, 8, 14, 15, 16 | trlnidat 35460 |
. . . . 5
|
| 67 | 12, 13, 65, 66 | syl3anc 1326 |
. . . 4
|
| 68 | 40, 14, 15, 16 | trlle 35471 |
. . . . 5
|
| 69 | 12, 13, 68 | syl2anc 693 |
. . . 4
|
| 70 | 8, 14, 15, 16 | trlcoat 36011 |
. . . . 5
|
| 71 | 12, 54, 59, 70 | syl3anc 1326 |
. . . 4
|
| 72 | 40, 19, 36, 41, 8, 14 | lhp2at0 35318 |
. . . 4
|
| 73 | 12, 53, 64, 67, 69, 71, 46, 72 | syl322anc 1354 |
. . 3
|
| 74 | 38, 52, 73 | 3eqtr2rd 2663 |
. 2
|
| 75 | cdlemh.s |
. . 3
| |
| 76 | 75 | oveq1i 6660 |
. 2
|
| 77 | 74, 76 | syl6reqr 2675 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-undef 7399 df-map 7859 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-llines 34784 df-lplanes 34785 df-lvols 34786 df-lines 34787 df-psubsp 34789 df-pmap 34790 df-padd 35082 df-lhyp 35274 df-laut 35275 df-ldil 35390 df-ltrn 35391 df-trl 35446 |
| This theorem is referenced by: cdlemh 36105 |
| Copyright terms: Public domain | W3C validator |