MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicref Structured version   Visualization version   Unicode version

Theorem cicref 16461
Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicref  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  ->  O (  ~=c𝑐  `  C ) O )

Proof of Theorem cicref
StepHypRef Expression
1 eqid 2622 . 2  |-  (  Iso  `  C )  =  (  Iso  `  C )
2 eqid 2622 . 2  |-  ( Base `  C )  =  (
Base `  C )
3 simpl 473 . 2  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  ->  C  e.  Cat )
4 simpr 477 . 2  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  ->  O  e.  ( Base `  C ) )
5 eqid 2622 . . 3  |-  (Inv `  C )  =  (Inv
`  C )
6 eqid 2622 . . . . . 6  |-  ( Hom  `  C )  =  ( Hom  `  C )
7 eqid 2622 . . . . . 6  |-  ( Id
`  C )  =  ( Id `  C
)
8 eqid 2622 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
92, 6, 7, 3, 4catidcl 16343 . . . . . 6  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( Id `  C ) `  O
)  e.  ( O ( Hom  `  C
) O ) )
102, 6, 7, 3, 4, 8, 4, 9catrid 16345 . . . . 5  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( ( Id
`  C ) `  O ) ( <. O ,  O >. (comp `  C ) O ) ( ( Id `  C ) `  O
) )  =  ( ( Id `  C
) `  O )
)
11 eqid 2622 . . . . . . 7  |-  (Sect `  C )  =  (Sect `  C )
122, 6, 8, 7, 11, 3, 4, 4, 9, 9issect2 16414 . . . . . 6  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( ( Id
`  C ) `  O ) ( O (Sect `  C ) O ) ( ( Id `  C ) `
 O )  <->  ( (
( Id `  C
) `  O )
( <. O ,  O >. (comp `  C ) O ) ( ( Id `  C ) `
 O ) )  =  ( ( Id
`  C ) `  O ) ) )
1312, 12anbi12d 747 . . . . 5  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( ( ( Id `  C ) `
 O ) ( O (Sect `  C
) O ) ( ( Id `  C
) `  O )  /\  ( ( Id `  C ) `  O
) ( O (Sect `  C ) O ) ( ( Id `  C ) `  O
) )  <->  ( (
( ( Id `  C ) `  O
) ( <. O ,  O >. (comp `  C
) O ) ( ( Id `  C
) `  O )
)  =  ( ( Id `  C ) `
 O )  /\  ( ( ( Id
`  C ) `  O ) ( <. O ,  O >. (comp `  C ) O ) ( ( Id `  C ) `  O
) )  =  ( ( Id `  C
) `  O )
) ) )
1410, 10, 13mpbir2and 957 . . . 4  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( ( Id
`  C ) `  O ) ( O (Sect `  C ) O ) ( ( Id `  C ) `
 O )  /\  ( ( Id `  C ) `  O
) ( O (Sect `  C ) O ) ( ( Id `  C ) `  O
) ) )
152, 5, 3, 4, 4, 11isinv 16420 . . . 4  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( ( Id
`  C ) `  O ) ( O (Inv `  C ) O ) ( ( Id `  C ) `
 O )  <->  ( (
( Id `  C
) `  O )
( O (Sect `  C ) O ) ( ( Id `  C ) `  O
)  /\  ( ( Id `  C ) `  O ) ( O (Sect `  C ) O ) ( ( Id `  C ) `
 O ) ) ) )
1614, 15mpbird 247 . . 3  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( Id `  C ) `  O
) ( O (Inv
`  C ) O ) ( ( Id
`  C ) `  O ) )
172, 5, 3, 4, 4, 1, 16inviso1 16426 . 2  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  -> 
( ( Id `  C ) `  O
)  e.  ( O (  Iso  `  C
) O ) )
181, 2, 3, 4, 4, 17brcici 16460 1  |-  ( ( C  e.  Cat  /\  O  e.  ( Base `  C ) )  ->  O (  ~=c𝑐  `  C ) O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405    Iso ciso 16406    ~=c𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  cicer  16466
  Copyright terms: Public domain W3C validator