MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicer Structured version   Visualization version   Unicode version

Theorem cicer 16466
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicer  |-  ( C  e.  Cat  ->  (  ~=c𝑐  `  C )  Er  ( Base `  C ) )

Proof of Theorem cicer
Dummy variables  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5247 . . . . . 6  |-  Rel  { <. x ,  y >.  |  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  ( (  Iso  `  C
) `  <. x ,  y >. )  =/=  (/) ) }
21a1i 11 . . . . 5  |-  ( C  e.  Cat  ->  Rel  {
<. x ,  y >.  |  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  ( (  Iso  `  C
) `  <. x ,  y >. )  =/=  (/) ) } )
3 fveq2 6191 . . . . . . . . 9  |-  ( f  =  <. x ,  y
>.  ->  ( (  Iso  `  C ) `  f
)  =  ( (  Iso  `  C ) `  <. x ,  y
>. ) )
43neeq1d 2853 . . . . . . . 8  |-  ( f  =  <. x ,  y
>.  ->  ( ( (  Iso  `  C ) `  f )  =/=  (/)  <->  ( (  Iso  `  C ) `  <. x ,  y >.
)  =/=  (/) ) )
54rabxp 5154 . . . . . . 7  |-  { f  e.  ( ( Base `  C )  X.  ( Base `  C ) )  |  ( (  Iso  `  C ) `  f
)  =/=  (/) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  ( (  Iso  `  C
) `  <. x ,  y >. )  =/=  (/) ) }
65a1i 11 . . . . . 6  |-  ( C  e.  Cat  ->  { f  e.  ( ( Base `  C )  X.  ( Base `  C ) )  |  ( (  Iso  `  C ) `  f
)  =/=  (/) }  =  { <. x ,  y
>.  |  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  ( (  Iso  `  C
) `  <. x ,  y >. )  =/=  (/) ) } )
76releqd 5203 . . . . 5  |-  ( C  e.  Cat  ->  ( Rel  { f  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  |  ( (  Iso  `  C
) `  f )  =/=  (/) }  <->  Rel  { <. x ,  y >.  |  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
)  /\  ( (  Iso  `  C ) `  <. x ,  y >.
)  =/=  (/) ) } ) )
82, 7mpbird 247 . . . 4  |-  ( C  e.  Cat  ->  Rel  { f  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |  ( (  Iso  `  C
) `  f )  =/=  (/) } )
9 isofn 16435 . . . . . 6  |-  ( C  e.  Cat  ->  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
10 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
11 sqxpexg 6963 . . . . . . 7  |-  ( (
Base `  C )  e.  _V  ->  ( ( Base `  C )  X.  ( Base `  C
) )  e.  _V )
1210, 11mp1i 13 . . . . . 6  |-  ( C  e.  Cat  ->  (
( Base `  C )  X.  ( Base `  C
) )  e.  _V )
13 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
1413a1i 11 . . . . . 6  |-  ( C  e.  Cat  ->  (/)  e.  _V )
15 suppvalfn 7302 . . . . . 6  |-  ( ( (  Iso  `  C
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) )  /\  (
( Base `  C )  X.  ( Base `  C
) )  e.  _V  /\  (/)  e.  _V )  -> 
( (  Iso  `  C
) supp  (/) )  =  {
f  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |  ( (  Iso  `  C
) `  f )  =/=  (/) } )
169, 12, 14, 15syl3anc 1326 . . . . 5  |-  ( C  e.  Cat  ->  (
(  Iso  `  C ) supp  (/) )  =  {
f  e.  ( (
Base `  C )  X.  ( Base `  C
) )  |  ( (  Iso  `  C
) `  f )  =/=  (/) } )
1716releqd 5203 . . . 4  |-  ( C  e.  Cat  ->  ( Rel  ( (  Iso  `  C
) supp  (/) )  <->  Rel  { f  e.  ( ( Base `  C )  X.  ( Base `  C ) )  |  ( (  Iso  `  C ) `  f
)  =/=  (/) } ) )
188, 17mpbird 247 . . 3  |-  ( C  e.  Cat  ->  Rel  ( (  Iso  `  C
) supp  (/) ) )
19 cicfval 16457 . . . 4  |-  ( C  e.  Cat  ->  (  ~=c𝑐  `  C )  =  ( (  Iso  `  C
) supp  (/) ) )
2019releqd 5203 . . 3  |-  ( C  e.  Cat  ->  ( Rel  (  ~=c𝑐  `  C )  <->  Rel  ( (  Iso  `  C ) supp  (/) ) ) )
2118, 20mpbird 247 . 2  |-  ( C  e.  Cat  ->  Rel  (  ~=c𝑐  `  C ) )
22 cicsym 16464 . 2  |-  ( ( C  e.  Cat  /\  x (  ~=c𝑐  `  C ) y )  ->  y
(  ~=c𝑐  `  C ) x )
23 cictr 16465 . . 3  |-  ( ( C  e.  Cat  /\  x (  ~=c𝑐  `  C ) y  /\  y ( 
~=c𝑐  `  C ) z )  ->  x (  ~=c𝑐  `  C
) z )
24233expb 1266 . 2  |-  ( ( C  e.  Cat  /\  ( x (  ~=c𝑐  `  C
) y  /\  y
(  ~=c𝑐  `  C ) z ) )  ->  x (  ~=c𝑐  `  C ) z )
25 cicref 16461 . . 3  |-  ( ( C  e.  Cat  /\  x  e.  ( Base `  C ) )  ->  x (  ~=c𝑐  `  C ) x )
26 ciclcl 16462 . . 3  |-  ( ( C  e.  Cat  /\  x (  ~=c𝑐  `  C ) x )  ->  x  e.  ( Base `  C
) )
2725, 26impbida 877 . 2  |-  ( C  e.  Cat  ->  (
x  e.  ( Base `  C )  <->  x (  ~=c𝑐  `  C ) x ) )
2821, 22, 24, 27iserd 7768 1  |-  ( C  e.  Cat  ->  (  ~=c𝑐  `  C )  Er  ( Base `  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112   Rel wrel 5119    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295    Er wer 7739   Basecbs 15857   Catccat 16325    Iso ciso 16406    ~=c𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-er 7742  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator