MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ciclcl Structured version   Visualization version   Unicode version

Theorem ciclcl 16462
Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
ciclcl  |-  ( ( C  e.  Cat  /\  R (  ~=c𝑐  `  C ) S )  ->  R  e.  ( Base `  C
) )

Proof of Theorem ciclcl
StepHypRef Expression
1 cicfval 16457 . . . 4  |-  ( C  e.  Cat  ->  (  ~=c𝑐  `  C )  =  ( (  Iso  `  C
) supp  (/) ) )
21breqd 4664 . . 3  |-  ( C  e.  Cat  ->  ( R (  ~=c𝑐  `  C ) S  <->  R ( (  Iso  `  C ) supp  (/) ) S ) )
3 isofn 16435 . . . . 5  |-  ( C  e.  Cat  ->  (  Iso  `  C )  Fn  ( ( Base `  C
)  X.  ( Base `  C ) ) )
4 fvex 6201 . . . . . 6  |-  ( Base `  C )  e.  _V
5 sqxpexg 6963 . . . . . 6  |-  ( (
Base `  C )  e.  _V  ->  ( ( Base `  C )  X.  ( Base `  C
) )  e.  _V )
64, 5mp1i 13 . . . . 5  |-  ( C  e.  Cat  ->  (
( Base `  C )  X.  ( Base `  C
) )  e.  _V )
7 0ex 4790 . . . . . 6  |-  (/)  e.  _V
87a1i 11 . . . . 5  |-  ( C  e.  Cat  ->  (/)  e.  _V )
9 df-br 4654 . . . . . 6  |-  ( R ( (  Iso  `  C
) supp  (/) ) S  <->  <. R ,  S >.  e.  ( (  Iso  `  C ) supp  (/) ) )
10 elsuppfn 7303 . . . . . 6  |-  ( ( (  Iso  `  C
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) )  /\  (
( Base `  C )  X.  ( Base `  C
) )  e.  _V  /\  (/)  e.  _V )  -> 
( <. R ,  S >.  e.  ( (  Iso  `  C ) supp  (/) )  <->  ( <. R ,  S >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  ( (  Iso  `  C
) `  <. R ,  S >. )  =/=  (/) ) ) )
119, 10syl5bb 272 . . . . 5  |-  ( ( (  Iso  `  C
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) )  /\  (
( Base `  C )  X.  ( Base `  C
) )  e.  _V  /\  (/)  e.  _V )  -> 
( R ( (  Iso  `  C ) supp  (/) ) S  <->  ( <. R ,  S >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  ( (  Iso  `  C
) `  <. R ,  S >. )  =/=  (/) ) ) )
123, 6, 8, 11syl3anc 1326 . . . 4  |-  ( C  e.  Cat  ->  ( R ( (  Iso  `  C ) supp  (/) ) S  <-> 
( <. R ,  S >.  e.  ( ( Base `  C )  X.  ( Base `  C ) )  /\  ( (  Iso  `  C ) `  <. R ,  S >. )  =/=  (/) ) ) )
13 opelxp1 5150 . . . . 5  |-  ( <. R ,  S >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  ->  R  e.  ( Base `  C ) )
1413adantr 481 . . . 4  |-  ( (
<. R ,  S >.  e.  ( ( Base `  C
)  X.  ( Base `  C ) )  /\  ( (  Iso  `  C
) `  <. R ,  S >. )  =/=  (/) )  ->  R  e.  ( Base `  C ) )
1512, 14syl6bi 243 . . 3  |-  ( C  e.  Cat  ->  ( R ( (  Iso  `  C ) supp  (/) ) S  ->  R  e.  (
Base `  C )
) )
162, 15sylbid 230 . 2  |-  ( C  e.  Cat  ->  ( R (  ~=c𝑐  `  C ) S  ->  R  e.  ( Base `  C )
) )
1716imp 445 1  |-  ( ( C  e.  Cat  /\  R (  ~=c𝑐  `  C ) S )  ->  R  e.  ( Base `  C
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653    X. cxp 5112    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Basecbs 15857   Catccat 16325    Iso ciso 16406    ~=c𝑐 ccic 16455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-supp 7296  df-inv 16408  df-iso 16409  df-cic 16456
This theorem is referenced by:  cicsym  16464  cictr  16465  cicer  16466  initoeu2  16666
  Copyright terms: Public domain W3C validator