MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Visualization version   Unicode version

Theorem cnextfres 21873
Description:  F and its extension by continuity agree on the domain of  F. (Contributed by Thierry Arnoux, 29-Aug-2020.)
Hypotheses
Ref Expression
cnextfres.c  |-  C  = 
U. J
cnextfres.b  |-  B  = 
U. K
cnextfres.j  |-  ( ph  ->  J  e.  Top )
cnextfres.k  |-  ( ph  ->  K  e.  Haus )
cnextfres.a  |-  ( ph  ->  A  C_  C )
cnextfres.1  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
cnextfres.x  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
cnextfres  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
) `  X )  =  ( F `  X ) )

Proof of Theorem cnextfres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnextfres.j . . 3  |-  ( ph  ->  J  e.  Top )
2 cnextfres.k . . 3  |-  ( ph  ->  K  e.  Haus )
3 cnextfres.1 . . . . 5  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
4 eqid 2622 . . . . . 6  |-  U. ( Jt  A )  =  U. ( Jt  A )
5 cnextfres.b . . . . . 6  |-  B  = 
U. K
64, 5cnf 21050 . . . . 5  |-  ( F  e.  ( ( Jt  A )  Cn  K )  ->  F : U. ( Jt  A ) --> B )
73, 6syl 17 . . . 4  |-  ( ph  ->  F : U. ( Jt  A ) --> B )
8 cnextfres.a . . . . . 6  |-  ( ph  ->  A  C_  C )
9 cnextfres.c . . . . . . 7  |-  C  = 
U. J
109restuni 20966 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  =  U. ( Jt  A ) )
111, 8, 10syl2anc 693 . . . . 5  |-  ( ph  ->  A  =  U. ( Jt  A ) )
1211feq2d 6031 . . . 4  |-  ( ph  ->  ( F : A --> B 
<->  F : U. ( Jt  A ) --> B ) )
137, 12mpbird 247 . . 3  |-  ( ph  ->  F : A --> B )
149, 5cnextfun 21868 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Haus )  /\  ( F : A --> B  /\  A  C_  C
) )  ->  Fun  ( ( JCnExt K
) `  F )
)
151, 2, 13, 8, 14syl22anc 1327 . 2  |-  ( ph  ->  Fun  ( ( JCnExt
K ) `  F
) )
169sscls 20860 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  C_  ( ( cls `  J ) `  A
) )
171, 8, 16syl2anc 693 . . . . . . 7  |-  ( ph  ->  A  C_  ( ( cls `  J ) `  A ) )
18 cnextfres.x . . . . . . 7  |-  ( ph  ->  X  e.  A )
1917, 18sseldd 3604 . . . . . 6  |-  ( ph  ->  X  e.  ( ( cls `  J ) `
 A ) )
209, 5, 1, 8, 3, 18flfcntr 21847 . . . . . 6  |-  ( ph  ->  ( F `  X
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F ) )
2119, 20jca 554 . . . . 5  |-  ( ph  ->  ( X  e.  ( ( cls `  J
) `  A )  /\  ( F `  X
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
22 sneq 4187 . . . . . . . . . 10  |-  ( x  =  X  ->  { x }  =  { X } )
2322fveq2d 6195 . . . . . . . . 9  |-  ( x  =  X  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { X } ) )
2423oveq1d 6665 . . . . . . . 8  |-  ( x  =  X  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { X } )t  A ) )
2524oveq2d 6666 . . . . . . 7  |-  ( x  =  X  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) )
2625fveq1d 6193 . . . . . 6  |-  ( x  =  X  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { X } )t  A ) ) `  F ) )
2726opeliunxp2 5260 . . . . 5  |-  ( <. X ,  ( F `  X ) >.  e.  U_ x  e.  ( ( cls `  J ) `  A ) ( { x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  <->  ( X  e.  ( ( cls `  J
) `  A )  /\  ( F `  X
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { X } )t  A ) ) `  F ) ) )
2821, 27sylibr 224 . . . 4  |-  ( ph  -> 
<. X ,  ( F `
 X ) >.  e.  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
29 haustop 21135 . . . . . . 7  |-  ( K  e.  Haus  ->  K  e. 
Top )
302, 29syl 17 . . . . . 6  |-  ( ph  ->  K  e.  Top )
319, 5cnextfval 21866 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  C
) )  ->  (
( JCnExt K ) `
 F )  = 
U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
321, 30, 13, 8, 31syl22anc 1327 . . . . 5  |-  ( ph  ->  ( ( JCnExt K
) `  F )  =  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
3332eleq2d 2687 . . . 4  |-  ( ph  ->  ( <. X ,  ( F `  X )
>.  e.  ( ( JCnExt
K ) `  F
)  <->  <. X ,  ( F `  X )
>.  e.  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) ) )
3428, 33mpbird 247 . . 3  |-  ( ph  -> 
<. X ,  ( F `
 X ) >.  e.  ( ( JCnExt K
) `  F )
)
35 df-br 4654 . . 3  |-  ( X ( ( JCnExt K
) `  F )
( F `  X
)  <->  <. X ,  ( F `  X )
>.  e.  ( ( JCnExt
K ) `  F
) )
3634, 35sylibr 224 . 2  |-  ( ph  ->  X ( ( JCnExt
K ) `  F
) ( F `  X ) )
37 funbrfv 6234 . . 3  |-  ( Fun  ( ( JCnExt K
) `  F )  ->  ( X ( ( JCnExt K ) `  F ) ( F `
 X )  -> 
( ( ( JCnExt
K ) `  F
) `  X )  =  ( F `  X ) ) )
3837imp 445 . 2  |-  ( ( Fun  ( ( JCnExt
K ) `  F
)  /\  X (
( JCnExt K ) `
 F ) ( F `  X ) )  ->  ( (
( JCnExt K ) `
 F ) `  X )  =  ( F `  X ) )
3915, 36, 38syl2anc 693 1  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
) `  X )  =  ( F `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    X. cxp 5112   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698   clsccl 20822   neicnei 20901    Cn ccn 21028   Hauscha 21112    fLimf cflf 21739  CnExtccnext 21863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-cnext 21864
This theorem is referenced by:  rrhqima  30058
  Copyright terms: Public domain W3C validator