| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkofvcn | Structured version Visualization version Unicode version | ||
| Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn 21459.) (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| xkofvcn.1 |
|
| xkofvcn.2 |
|
| Ref | Expression |
|---|---|
| xkofvcn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkofvcn.2 |
. 2
| |
| 2 | nllytop 21276 |
. . . 4
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | 3 | xkotopon 21403 |
. . . 4
|
| 5 | 2, 4 | sylan 488 |
. . 3
|
| 6 | 2 | adantr 481 |
. . . 4
|
| 7 | xkofvcn.1 |
. . . . 5
| |
| 8 | 7 | toptopon 20722 |
. . . 4
|
| 9 | 6, 8 | sylib 208 |
. . 3
|
| 10 | 5, 9 | cnmpt1st 21471 |
. . . 4
|
| 11 | 5, 9 | cnmpt2nd 21472 |
. . . . 5
|
| 12 | 1on 7567 |
. . . . . . 7
| |
| 13 | distopon 20801 |
. . . . . . 7
| |
| 14 | 12, 13 | mp1i 13 |
. . . . . 6
|
| 15 | xkoccn 21422 |
. . . . . 6
| |
| 16 | 14, 9, 15 | syl2anc 693 |
. . . . 5
|
| 17 | sneq 4187 |
. . . . . 6
| |
| 18 | 17 | xpeq2d 5139 |
. . . . 5
|
| 19 | 5, 9, 11, 9, 16, 18 | cnmpt21 21474 |
. . . 4
|
| 20 | distop 20799 |
. . . . . 6
| |
| 21 | 12, 20 | mp1i 13 |
. . . . 5
|
| 22 | eqid 2622 |
. . . . . 6
| |
| 23 | 22 | xkotopon 21403 |
. . . . 5
|
| 24 | 21, 6, 23 | syl2anc 693 |
. . . 4
|
| 25 | simpl 473 |
. . . . 5
| |
| 26 | simpr 477 |
. . . . 5
| |
| 27 | eqid 2622 |
. . . . . 6
| |
| 28 | 27 | xkococn 21463 |
. . . . 5
|
| 29 | 21, 25, 26, 28 | syl3anc 1326 |
. . . 4
|
| 30 | coeq1 5279 |
. . . . 5
| |
| 31 | coeq2 5280 |
. . . . 5
| |
| 32 | 30, 31 | sylan9eq 2676 |
. . . 4
|
| 33 | 5, 9, 10, 19, 5, 24, 29, 32 | cnmpt22 21477 |
. . 3
|
| 34 | eqid 2622 |
. . . . 5
| |
| 35 | 34 | xkotopon 21403 |
. . . 4
|
| 36 | 21, 26, 35 | syl2anc 693 |
. . 3
|
| 37 | 0lt1o 7584 |
. . . . 5
| |
| 38 | 37 | a1i 11 |
. . . 4
|
| 39 | unipw 4918 |
. . . . . 6
| |
| 40 | 39 | eqcomi 2631 |
. . . . 5
|
| 41 | 40 | xkopjcn 21459 |
. . . 4
|
| 42 | 21, 26, 38, 41 | syl3anc 1326 |
. . 3
|
| 43 | fveq1 6190 |
. . . 4
| |
| 44 | vex 3203 |
. . . . . . 7
| |
| 45 | 44 | fconst 6091 |
. . . . . 6
|
| 46 | fvco3 6275 |
. . . . . 6
| |
| 47 | 45, 37, 46 | mp2an 708 |
. . . . 5
|
| 48 | 44 | fvconst2 6469 |
. . . . . . 7
|
| 49 | 37, 48 | ax-mp 5 |
. . . . . 6
|
| 50 | 49 | fveq2i 6194 |
. . . . 5
|
| 51 | 47, 50 | eqtri 2644 |
. . . 4
|
| 52 | 43, 51 | syl6eq 2672 |
. . 3
|
| 53 | 5, 9, 33, 36, 42, 52 | cnmpt21 21474 |
. 2
|
| 54 | 1, 53 | syl5eqel 2705 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-pt 16105 df-top 20699 df-topon 20716 df-bases 20750 df-ntr 20824 df-nei 20902 df-cn 21031 df-cnp 21032 df-cmp 21190 df-nlly 21270 df-tx 21365 df-xko 21366 |
| This theorem is referenced by: cnmptk1p 21488 cnmptk2 21489 |
| Copyright terms: Public domain | W3C validator |