Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem2 Structured version   Visualization version   Unicode version

Theorem dalawlem2 35158
Description: Lemma for dalaw 35172. Utility lemma that breaks  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) ) into a join of two pieces. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l  |-  .<_  =  ( le `  K )
dalawlem.j  |-  .\/  =  ( join `  K )
dalawlem.m  |-  ./\  =  ( meet `  K )
dalawlem.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
dalawlem2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) )

Proof of Theorem dalawlem2
StepHypRef Expression
1 simp1 1061 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  K  e.  HL )
2 hllat 34650 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  K  e.  Lat )
4 simp2l 1087 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  P  e.  A )
5 simp2r 1088 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  Q  e.  A )
6 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 dalawlem.j . . . . . . 7  |-  .\/  =  ( join `  K )
8 dalawlem.a . . . . . . 7  |-  A  =  ( Atoms `  K )
96, 7, 8hlatjcl 34653 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
101, 4, 5, 9syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
11 simp3r 1090 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  T  e.  A )
126, 8atbase 34576 . . . . . 6  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1311, 12syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  T  e.  ( Base `  K ) )
14 dalawlem.l . . . . . 6  |-  .<_  =  ( le `  K )
156, 14, 7latlej1 17060 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  T ) )
163, 10, 13, 15syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( ( P 
.\/  Q )  .\/  T ) )
17 simp3l 1089 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  S  e.  A )
186, 8atbase 34576 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1917, 18syl 17 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  S  e.  ( Base `  K ) )
206, 14, 7latlej1 17060 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( P  .\/  Q )  .<_  ( ( P  .\/  Q ) 
.\/  S ) )
213, 10, 19, 20syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( ( P 
.\/  Q )  .\/  S ) )
226, 7latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K ) )
233, 10, 13, 22syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
) )
246, 7latjcl 17051 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K ) )
253, 10, 19, 24syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
) )
26 dalawlem.m . . . . . 6  |-  ./\  =  ( meet `  K )
276, 14, 26latlem12 17078 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  T )  e.  ( Base `  K
)  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K ) ) )  ->  ( ( ( P  .\/  Q ) 
.<_  ( ( P  .\/  Q )  .\/  T )  /\  ( P  .\/  Q )  .<_  ( ( P  .\/  Q )  .\/  S ) )  <->  ( P  .\/  Q )  .<_  ( ( ( P  .\/  Q
)  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) ) ) )
283, 10, 23, 25, 27syl13anc 1328 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .<_  ( ( P  .\/  Q )  .\/  T )  /\  ( P  .\/  Q )  .<_  ( ( P  .\/  Q )  .\/  S ) )  <->  ( P  .\/  Q )  .<_  ( ( ( P  .\/  Q
)  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) ) ) )
2916, 21, 28mpbi2and 956 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( P  .\/  Q
)  .<_  ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) ) )
306, 26latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  e.  (
Base `  K )
)
313, 23, 25, 30syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  e.  (
Base `  K )
)
326, 7, 8hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
331, 17, 11, 32syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
346, 14, 26latmlem1 17081 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  (
( ( P  .\/  Q )  .\/  T ) 
./\  ( ( P 
.\/  Q )  .\/  S ) )  e.  (
Base `  K )  /\  ( S  .\/  T
)  e.  ( Base `  K ) ) )  ->  ( ( P 
.\/  Q )  .<_  ( ( ( P 
.\/  Q )  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ->  (
( P  .\/  Q
)  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) ) ) )
353, 10, 31, 33, 34syl13anc 1328 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  .<_  ( (
( P  .\/  Q
)  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ->  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( (
( ( P  .\/  Q )  .\/  T ) 
./\  ( ( P 
.\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) ) ) )
3629, 35mpd 15 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) ) )
376, 14, 7latlej2 17061 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  ( Base `  K )
)  ->  S  .<_  ( ( P  .\/  Q
)  .\/  S )
)
383, 10, 19, 37syl3anc 1326 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  S  .<_  ( ( P 
.\/  Q )  .\/  S ) )
396, 14, 7, 26, 8atmod3i1 35150 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  /\  S  .<_  ( ( P  .\/  Q
)  .\/  S )
)  ->  ( S  .\/  ( ( ( P 
.\/  Q )  .\/  S )  ./\  T )
)  =  ( ( ( P  .\/  Q
)  .\/  S )  ./\  ( S  .\/  T
) ) )
401, 17, 25, 13, 38, 39syl131anc 1339 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( S  .\/  (
( ( P  .\/  Q )  .\/  S ) 
./\  T ) )  =  ( ( ( P  .\/  Q ) 
.\/  S )  ./\  ( S  .\/  T ) ) )
4140oveq2d 6666 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  T )  ./\  ( S  .\/  ( ( ( P 
.\/  Q )  .\/  S )  ./\  T )
) )  =  ( ( ( P  .\/  Q )  .\/  T ) 
./\  ( ( ( P  .\/  Q ) 
.\/  S )  ./\  ( S  .\/  T ) ) ) )
426, 26latmcl 17052 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
)  /\  T  e.  ( Base `  K )
)  ->  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  e.  (
Base `  K )
)
433, 25, 13, 42syl3anc 1326 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  e.  ( Base `  K
) )
446, 14, 7, 26latmlej22 17093 . . . . 5  |-  ( ( K  e.  Lat  /\  ( T  e.  ( Base `  K )  /\  ( ( P  .\/  Q )  .\/  S )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( ( P  .\/  Q )  .\/  S ) 
./\  T )  .<_  ( ( P  .\/  Q )  .\/  T ) )
453, 13, 25, 10, 44syl13anc 1328 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( P 
.\/  Q )  .\/  S )  ./\  T )  .<_  ( ( P  .\/  Q )  .\/  T ) )
466, 14, 7, 26, 8atmod2i2 35148 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  ( ( P  .\/  Q )  .\/  T )  e.  ( Base `  K
)  /\  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  e.  (
Base `  K )
)  /\  ( (
( P  .\/  Q
)  .\/  S )  ./\  T )  .<_  ( ( P  .\/  Q ) 
.\/  T ) )  ->  ( ( ( ( P  .\/  Q
)  .\/  T )  ./\  S )  .\/  (
( ( P  .\/  Q )  .\/  S ) 
./\  T ) )  =  ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( S  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) ) )
471, 17, 23, 43, 45, 46syl131anc 1339 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) )  =  ( ( ( P 
.\/  Q )  .\/  T )  ./\  ( S  .\/  ( ( ( P 
.\/  Q )  .\/  S )  ./\  T )
) ) )
48 hlol 34648 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
491, 48syl 17 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  ->  K  e.  OL )
506, 26latmassOLD 34516 . . . 4  |-  ( ( K  e.  OL  /\  ( ( ( P 
.\/  Q )  .\/  T )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  .\/  S )  e.  ( Base `  K
)  /\  ( S  .\/  T )  e.  (
Base `  K )
) )  ->  (
( ( ( P 
.\/  Q )  .\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) )  =  ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( ( P 
.\/  Q )  .\/  S )  ./\  ( S  .\/  T ) ) ) )
5149, 23, 25, 33, 50syl13anc 1328 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) )  =  ( ( ( P 
.\/  Q )  .\/  T )  ./\  ( (
( P  .\/  Q
)  .\/  S )  ./\  ( S  .\/  T
) ) ) )
5241, 47, 513eqtr4rd 2667 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  ( ( P  .\/  Q )  .\/  S ) )  ./\  ( S  .\/  T ) )  =  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) )
5336, 52breqtrd 4679 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
)  /\  ( S  e.  A  /\  T  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  ( S  .\/  T ) )  .<_  ( ( ( ( P  .\/  Q ) 
.\/  T )  ./\  S )  .\/  ( ( ( P  .\/  Q
)  .\/  S )  ./\  T ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   OLcol 34461   Atomscatm 34550   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082
This theorem is referenced by:  dalawlem5  35161  dalawlem8  35164
  Copyright terms: Public domain W3C validator