Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem16 Structured version   Visualization version   Unicode version

Theorem dalem16 34965
Description: Lemma for dath 35022. The atoms  D,  E, and  F form a line of perspectivity. This is Desargue's Theorem for the special case where planes  Y and  Z are different. (Contributed by NM, 7-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem16.m  |-  ./\  =  ( meet `  K )
dalem16.o  |-  O  =  ( LPlanes `  K )
dalem16.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem16.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
dalem16.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dalem16.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dalem16.f  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
Assertion
Ref Expression
dalem16  |-  ( (
ph  /\  Y  =/=  Z )  ->  F  .<_  ( D  .\/  E ) )

Proof of Theorem dalem16
StepHypRef Expression
1 dalema.ph . . . 4  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
2 dalemc.l . . . 4  |-  .<_  =  ( le `  K )
3 dalemc.j . . . 4  |-  .\/  =  ( join `  K )
4 dalemc.a . . . 4  |-  A  =  ( Atoms `  K )
5 dalem16.m . . . 4  |-  ./\  =  ( meet `  K )
6 dalem16.o . . . 4  |-  O  =  ( LPlanes `  K )
7 dalem16.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
8 dalem16.z . . . 4  |-  Z  =  ( ( S  .\/  T )  .\/  U )
9 eqid 2622 . . . 4  |-  ( Y 
./\  Z )  =  ( Y  ./\  Z
)
10 dalem16.f . . . 4  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem12 34961 . . 3  |-  ( ph  ->  F  .<_  ( Y  ./\ 
Z ) )
1211adantr 481 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  F  .<_  ( Y  ./\  Z )
)
13 dalem16.d . . . . . 6  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 13dalem10 34959 . . . . 5  |-  ( ph  ->  D  .<_  ( Y  ./\ 
Z ) )
15 dalem16.e . . . . . 6  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
161, 2, 3, 4, 5, 6, 7, 8, 9, 15dalem11 34960 . . . . 5  |-  ( ph  ->  E  .<_  ( Y  ./\ 
Z ) )
171dalemkelat 34910 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
181, 2, 3, 4, 5, 6, 7, 8, 13dalemdea 34948 . . . . . . 7  |-  ( ph  ->  D  e.  A )
19 eqid 2622 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
2019, 4atbase 34576 . . . . . . 7  |-  ( D  e.  A  ->  D  e.  ( Base `  K
) )
2118, 20syl 17 . . . . . 6  |-  ( ph  ->  D  e.  ( Base `  K ) )
221, 2, 3, 4, 5, 6, 7, 8, 15dalemeea 34949 . . . . . . 7  |-  ( ph  ->  E  e.  A )
2319, 4atbase 34576 . . . . . . 7  |-  ( E  e.  A  ->  E  e.  ( Base `  K
) )
2422, 23syl 17 . . . . . 6  |-  ( ph  ->  E  e.  ( Base `  K ) )
251, 6dalemyeb 34935 . . . . . . 7  |-  ( ph  ->  Y  e.  ( Base `  K ) )
261dalemzeo 34919 . . . . . . . 8  |-  ( ph  ->  Z  e.  O )
2719, 6lplnbase 34820 . . . . . . . 8  |-  ( Z  e.  O  ->  Z  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . . 7  |-  ( ph  ->  Z  e.  ( Base `  K ) )
2919, 5latmcl 17052 . . . . . . 7  |-  ( ( K  e.  Lat  /\  Y  e.  ( Base `  K )  /\  Z  e.  ( Base `  K
) )  ->  ( Y  ./\  Z )  e.  ( Base `  K
) )
3017, 25, 28, 29syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( Y  ./\  Z
)  e.  ( Base `  K ) )
3119, 2, 3latjle12 17062 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( D  e.  ( Base `  K )  /\  E  e.  ( Base `  K )  /\  ( Y  ./\  Z )  e.  ( Base `  K
) ) )  -> 
( ( D  .<_  ( Y  ./\  Z )  /\  E  .<_  ( Y 
./\  Z ) )  <-> 
( D  .\/  E
)  .<_  ( Y  ./\  Z ) ) )
3217, 21, 24, 30, 31syl13anc 1328 . . . . 5  |-  ( ph  ->  ( ( D  .<_  ( Y  ./\  Z )  /\  E  .<_  ( Y 
./\  Z ) )  <-> 
( D  .\/  E
)  .<_  ( Y  ./\  Z ) ) )
3314, 16, 32mpbi2and 956 . . . 4  |-  ( ph  ->  ( D  .\/  E
)  .<_  ( Y  ./\  Z ) )
3433adantr 481 . . 3  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( D  .\/  E )  .<_  ( Y 
./\  Z ) )
351dalemkehl 34909 . . . . 5  |-  ( ph  ->  K  e.  HL )
3635adantr 481 . . . 4  |-  ( (
ph  /\  Y  =/=  Z )  ->  K  e.  HL )
371, 2, 3, 4, 5, 6, 7, 8, 13, 15dalemdnee 34952 . . . . . 6  |-  ( ph  ->  D  =/=  E )
38 eqid 2622 . . . . . . 7  |-  ( LLines `  K )  =  (
LLines `  K )
393, 4, 38llni2 34798 . . . . . 6  |-  ( ( ( K  e.  HL  /\  D  e.  A  /\  E  e.  A )  /\  D  =/=  E
)  ->  ( D  .\/  E )  e.  (
LLines `  K ) )
4035, 18, 22, 37, 39syl31anc 1329 . . . . 5  |-  ( ph  ->  ( D  .\/  E
)  e.  ( LLines `  K ) )
4140adantr 481 . . . 4  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( D  .\/  E )  e.  (
LLines `  K ) )
421, 2, 3, 4, 5, 38, 6, 7, 8, 9dalem15 34964 . . . 4  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( Y  ./\ 
Z )  e.  (
LLines `  K ) )
432, 38llncmp 34808 . . . 4  |-  ( ( K  e.  HL  /\  ( D  .\/  E )  e.  ( LLines `  K
)  /\  ( Y  ./\ 
Z )  e.  (
LLines `  K ) )  ->  ( ( D 
.\/  E )  .<_  ( Y  ./\  Z )  <-> 
( D  .\/  E
)  =  ( Y 
./\  Z ) ) )
4436, 41, 42, 43syl3anc 1326 . . 3  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( ( D  .\/  E )  .<_  ( Y  ./\  Z )  <-> 
( D  .\/  E
)  =  ( Y 
./\  Z ) ) )
4534, 44mpbid 222 . 2  |-  ( (
ph  /\  Y  =/=  Z )  ->  ( D  .\/  E )  =  ( Y  ./\  Z )
)
4612, 45breqtrrd 4681 1  |-  ( (
ph  /\  Y  =/=  Z )  ->  F  .<_  ( D  .\/  E ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LLinesclln 34777   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  dalem63  35021
  Copyright terms: Public domain W3C validator